Cargando…
Genetic Control of Translesion Synthesis on Leading and Lagging DNA Strands in Plasmids Derived from Epstein-Barr Virus in Human Cells
DNA lesions in the template strand block synthesis by replicative DNA polymerases (Pols). Eukaryotic cells possess a number of specialized translesion synthesis (TLS) Pols with the ability to replicate through DNA lesions. The Epstein-Barr virus (EBV), a member of the herpesvirus family, infects hum...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Microbiology
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3448166/ https://www.ncbi.nlm.nih.gov/pubmed/22967980 http://dx.doi.org/10.1128/mBio.00271-12 |
_version_ | 1782244225556938752 |
---|---|
author | Yoon, Jung-Hoon Prakash, Satya Prakash, Louise |
author_facet | Yoon, Jung-Hoon Prakash, Satya Prakash, Louise |
author_sort | Yoon, Jung-Hoon |
collection | PubMed |
description | DNA lesions in the template strand block synthesis by replicative DNA polymerases (Pols). Eukaryotic cells possess a number of specialized translesion synthesis (TLS) Pols with the ability to replicate through DNA lesions. The Epstein-Barr virus (EBV), a member of the herpesvirus family, infects human B cells and is maintained there as an extrachromosomal replicon, replicating once per cycle during S phase. Except for the requirement of the virus-encoded origin-binding protein EBNA1, replication of plasmids containing the EBV origin of replication (oriP) is controlled by the same cellular processes that govern chromosomal replication. Since replication of EBV plasmid closely mimics that of human chromosomal DNA, in this study we examined the genetic control of TLS in a duplex plasmid in which bidirectional replication initiates from an EBV oriP origin and a UV-induced cis-syn TT dimer is placed on the leading- or the lagging-strand DNA template. Here we show that TLS occurs equally frequently on both the DNA strands of EBV plasmid and that the requirements of TLS Pols are the same regardless of which DNA strand carries the lesion. We discuss the implications of these observations for TLS mechanisms that operate on the two DNA strands during chromosomal replication and conclude that the same genetic mechanisms govern TLS during the replication of the leading and the lagging DNA strands in human cells. |
format | Online Article Text |
id | pubmed-3448166 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | American Society of Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-34481662012-09-25 Genetic Control of Translesion Synthesis on Leading and Lagging DNA Strands in Plasmids Derived from Epstein-Barr Virus in Human Cells Yoon, Jung-Hoon Prakash, Satya Prakash, Louise mBio Research Article DNA lesions in the template strand block synthesis by replicative DNA polymerases (Pols). Eukaryotic cells possess a number of specialized translesion synthesis (TLS) Pols with the ability to replicate through DNA lesions. The Epstein-Barr virus (EBV), a member of the herpesvirus family, infects human B cells and is maintained there as an extrachromosomal replicon, replicating once per cycle during S phase. Except for the requirement of the virus-encoded origin-binding protein EBNA1, replication of plasmids containing the EBV origin of replication (oriP) is controlled by the same cellular processes that govern chromosomal replication. Since replication of EBV plasmid closely mimics that of human chromosomal DNA, in this study we examined the genetic control of TLS in a duplex plasmid in which bidirectional replication initiates from an EBV oriP origin and a UV-induced cis-syn TT dimer is placed on the leading- or the lagging-strand DNA template. Here we show that TLS occurs equally frequently on both the DNA strands of EBV plasmid and that the requirements of TLS Pols are the same regardless of which DNA strand carries the lesion. We discuss the implications of these observations for TLS mechanisms that operate on the two DNA strands during chromosomal replication and conclude that the same genetic mechanisms govern TLS during the replication of the leading and the lagging DNA strands in human cells. American Society of Microbiology 2012-09-11 /pmc/articles/PMC3448166/ /pubmed/22967980 http://dx.doi.org/10.1128/mBio.00271-12 Text en Copyright © 2012 Yoon et al. http://creativecommons.org/licenses/by-nc-sa/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License (http://creativecommons.org/licenses/by-nc-sa/3.0/) , which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Yoon, Jung-Hoon Prakash, Satya Prakash, Louise Genetic Control of Translesion Synthesis on Leading and Lagging DNA Strands in Plasmids Derived from Epstein-Barr Virus in Human Cells |
title | Genetic Control of Translesion Synthesis on Leading and Lagging DNA Strands in Plasmids Derived from Epstein-Barr Virus in Human Cells |
title_full | Genetic Control of Translesion Synthesis on Leading and Lagging DNA Strands in Plasmids Derived from Epstein-Barr Virus in Human Cells |
title_fullStr | Genetic Control of Translesion Synthesis on Leading and Lagging DNA Strands in Plasmids Derived from Epstein-Barr Virus in Human Cells |
title_full_unstemmed | Genetic Control of Translesion Synthesis on Leading and Lagging DNA Strands in Plasmids Derived from Epstein-Barr Virus in Human Cells |
title_short | Genetic Control of Translesion Synthesis on Leading and Lagging DNA Strands in Plasmids Derived from Epstein-Barr Virus in Human Cells |
title_sort | genetic control of translesion synthesis on leading and lagging dna strands in plasmids derived from epstein-barr virus in human cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3448166/ https://www.ncbi.nlm.nih.gov/pubmed/22967980 http://dx.doi.org/10.1128/mBio.00271-12 |
work_keys_str_mv | AT yoonjunghoon geneticcontroloftranslesionsynthesisonleadingandlaggingdnastrandsinplasmidsderivedfromepsteinbarrvirusinhumancells AT prakashsatya geneticcontroloftranslesionsynthesisonleadingandlaggingdnastrandsinplasmidsderivedfromepsteinbarrvirusinhumancells AT prakashlouise geneticcontroloftranslesionsynthesisonleadingandlaggingdnastrandsinplasmidsderivedfromepsteinbarrvirusinhumancells |