Cargando…
Three-Dimensional Genome Architecture Influences Partner Selection for Chromosomal Translocations in Human Disease
Chromosomal translocations are frequent features of cancer genomes that contribute to disease progression. These rearrangements result from formation and illegitimate repair of DNA double-strand breaks (DSBs), a process that requires spatial colocalization of chromosomal breakpoints. The “contact fi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3460994/ https://www.ncbi.nlm.nih.gov/pubmed/23028501 http://dx.doi.org/10.1371/journal.pone.0044196 |
_version_ | 1782245026824192000 |
---|---|
author | Engreitz, Jesse M. Agarwala, Vineeta Mirny, Leonid A. |
author_facet | Engreitz, Jesse M. Agarwala, Vineeta Mirny, Leonid A. |
author_sort | Engreitz, Jesse M. |
collection | PubMed |
description | Chromosomal translocations are frequent features of cancer genomes that contribute to disease progression. These rearrangements result from formation and illegitimate repair of DNA double-strand breaks (DSBs), a process that requires spatial colocalization of chromosomal breakpoints. The “contact first” hypothesis suggests that translocation partners colocalize in the nuclei of normal cells, prior to rearrangement. It is unclear, however, the extent to which spatial interactions based on three-dimensional genome architecture contribute to chromosomal rearrangements in human disease. Here we intersect Hi-C maps of three-dimensional chromosome conformation with collections of 1,533 chromosomal translocations from cancer and germline genomes. We show that many translocation-prone pairs of regions genome-wide, including the cancer translocation partners BCR-ABL and MYC-IGH, display elevated Hi-C contact frequencies in normal human cells. Considering tissue specificity, we find that translocation breakpoints reported in human hematologic malignancies have higher Hi-C contact frequencies in lymphoid cells than those reported in sarcomas and epithelial tumors. However, translocations from multiple tissue types show significant correlation with Hi-C contact frequencies, suggesting that both tissue-specific and universal features of chromatin structure contribute to chromosomal alterations. Our results demonstrate that three-dimensional genome architecture shapes the landscape of rearrangements directly observed in human disease and establish Hi-C as a key method for dissecting these effects. |
format | Online Article Text |
id | pubmed-3460994 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-34609942012-10-01 Three-Dimensional Genome Architecture Influences Partner Selection for Chromosomal Translocations in Human Disease Engreitz, Jesse M. Agarwala, Vineeta Mirny, Leonid A. PLoS One Research Article Chromosomal translocations are frequent features of cancer genomes that contribute to disease progression. These rearrangements result from formation and illegitimate repair of DNA double-strand breaks (DSBs), a process that requires spatial colocalization of chromosomal breakpoints. The “contact first” hypothesis suggests that translocation partners colocalize in the nuclei of normal cells, prior to rearrangement. It is unclear, however, the extent to which spatial interactions based on three-dimensional genome architecture contribute to chromosomal rearrangements in human disease. Here we intersect Hi-C maps of three-dimensional chromosome conformation with collections of 1,533 chromosomal translocations from cancer and germline genomes. We show that many translocation-prone pairs of regions genome-wide, including the cancer translocation partners BCR-ABL and MYC-IGH, display elevated Hi-C contact frequencies in normal human cells. Considering tissue specificity, we find that translocation breakpoints reported in human hematologic malignancies have higher Hi-C contact frequencies in lymphoid cells than those reported in sarcomas and epithelial tumors. However, translocations from multiple tissue types show significant correlation with Hi-C contact frequencies, suggesting that both tissue-specific and universal features of chromatin structure contribute to chromosomal alterations. Our results demonstrate that three-dimensional genome architecture shapes the landscape of rearrangements directly observed in human disease and establish Hi-C as a key method for dissecting these effects. Public Library of Science 2012-09-28 /pmc/articles/PMC3460994/ /pubmed/23028501 http://dx.doi.org/10.1371/journal.pone.0044196 Text en © 2012 Engreitz et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Engreitz, Jesse M. Agarwala, Vineeta Mirny, Leonid A. Three-Dimensional Genome Architecture Influences Partner Selection for Chromosomal Translocations in Human Disease |
title | Three-Dimensional Genome Architecture Influences Partner Selection for Chromosomal Translocations in Human Disease |
title_full | Three-Dimensional Genome Architecture Influences Partner Selection for Chromosomal Translocations in Human Disease |
title_fullStr | Three-Dimensional Genome Architecture Influences Partner Selection for Chromosomal Translocations in Human Disease |
title_full_unstemmed | Three-Dimensional Genome Architecture Influences Partner Selection for Chromosomal Translocations in Human Disease |
title_short | Three-Dimensional Genome Architecture Influences Partner Selection for Chromosomal Translocations in Human Disease |
title_sort | three-dimensional genome architecture influences partner selection for chromosomal translocations in human disease |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3460994/ https://www.ncbi.nlm.nih.gov/pubmed/23028501 http://dx.doi.org/10.1371/journal.pone.0044196 |
work_keys_str_mv | AT engreitzjessem threedimensionalgenomearchitectureinfluencespartnerselectionforchromosomaltranslocationsinhumandisease AT agarwalavineeta threedimensionalgenomearchitectureinfluencespartnerselectionforchromosomaltranslocationsinhumandisease AT mirnyleonida threedimensionalgenomearchitectureinfluencespartnerselectionforchromosomaltranslocationsinhumandisease |