Cargando…

Inhibition of Glioma Cell Lysosome Exocytosis Inhibits Glioma Invasion

Cancer cells invade by secreting enzymes that degrade the extracellular matrix and these are sequestered in lysosomal vesicles. In this study, the effects of the selective lysosome lysing drug GPN and the lysosome exocytosis inhibitor vacuolin-1 on lysosome exocytosis were studied to determine their...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yu, Zhou, Yijiang, Zhu, Keqing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3461042/
https://www.ncbi.nlm.nih.gov/pubmed/23029308
http://dx.doi.org/10.1371/journal.pone.0045910
Descripción
Sumario:Cancer cells invade by secreting enzymes that degrade the extracellular matrix and these are sequestered in lysosomal vesicles. In this study, the effects of the selective lysosome lysing drug GPN and the lysosome exocytosis inhibitor vacuolin-1 on lysosome exocytosis were studied to determine their effect on glioma cell migration and invasion. Both GPN and vacuolin-1 evidently inhibited migration and invasion in transwell experiments and scratch experiments. There are more lysosomes located on the cell membrane of glioma cells than of astrocytes. GPN decreased the lysosome number on the cell membrane. We found that rab27A was expressed in glioma cells, and colocalized with cathepsin D in lysosome. RNAi-Rab27A inhibited lysosome cathepsin D exocytosis and glioma cell invasion in an in vitro assay. Inhibition of cathepsin D inhibited glioma cell migration. The data suggest that the inhibition of lysosome exocytosis from glioma cells plays an important modulatory role in their migration and invasion.