Cargando…
NF-κB p65 repression by the sesquiterpene lactone, Helenalin, contributes to the induction of autophagy cell death
BACKGROUND: Numerous studies have demonstrated that autophagy plays a vital role in maintaining cellular homeostasis. Interestingly, several anticancer agents were found to exert their anticancer effects by triggering autophagy. Emerging data suggest that autophagy represents a novel mechanism that...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3464891/ https://www.ncbi.nlm.nih.gov/pubmed/22784363 http://dx.doi.org/10.1186/1472-6882-12-93 |
_version_ | 1782245486124597248 |
---|---|
author | Lim, Chuan Bian Fu, Pan You Ky, Nung Zhu, Hong Shuang Feng, XiaoLing Li, Jinming Srinivasan, Kandhadayar Gopalan Hamza, Mohamed Sabry Zhao, Yan |
author_facet | Lim, Chuan Bian Fu, Pan You Ky, Nung Zhu, Hong Shuang Feng, XiaoLing Li, Jinming Srinivasan, Kandhadayar Gopalan Hamza, Mohamed Sabry Zhao, Yan |
author_sort | Lim, Chuan Bian |
collection | PubMed |
description | BACKGROUND: Numerous studies have demonstrated that autophagy plays a vital role in maintaining cellular homeostasis. Interestingly, several anticancer agents were found to exert their anticancer effects by triggering autophagy. Emerging data suggest that autophagy represents a novel mechanism that can be exploited for therapeutic benefit. Pharmacologically active natural compounds such as those from marine, terrestrial plants and animals represent a promising resource for novel anticancer drugs. There are several prominent examples from the past proving the success of natural products and derivatives exhibiting anticancer activity. Helenalin, a sesquiterpene lactone has been demonstrated to have potent anti-inflammatory and antitumor activity. Albeit previous studies demonstrating helenalin’s multi modal action on cellular proliferative and apoptosis, the mechanisms underlying its action are largely unexplained. METHODS: To deduce the mechanistic action of helenalin, cancer cells were treated with the drug at various concentrations and time intervals. Using western blot, FACS analysis, overexpression and knockdown studies, cellular signaling pathways were interrogated focusing on apoptosis and autophagy markers. RESULTS: We show here that helenalin induces sub-G1 arrest, apoptosis, caspase cleavage and increases the levels of the autophagic markers. Suppression of caspase cleavage by the pan caspase inhibitor, Z-VAD-fmk, suppressed induction of LC3-B and Atg12 and reduced autophagic cell death, indicating caspase activity was essential for autophagic cell death induced by helenalin. Additionally, helenalin suppressed NF-κB p65 expression in a dose and time dependent manner. Exogenous overexpression of p65 was accompanied by reduced levels of cell death whereas siRNA mediated suppression led to augmented levels of caspase cleavage, autophagic cell death markers and increased cell death. CONCLUSIONS: Taken together, these results show that helenalin mediated autophagic cell death entails inhibition of NF-κB p65, thus providing a promising approach for the treatment of cancers with aberrant activation of the NF-κB pathway. |
format | Online Article Text |
id | pubmed-3464891 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-34648912012-10-06 NF-κB p65 repression by the sesquiterpene lactone, Helenalin, contributes to the induction of autophagy cell death Lim, Chuan Bian Fu, Pan You Ky, Nung Zhu, Hong Shuang Feng, XiaoLing Li, Jinming Srinivasan, Kandhadayar Gopalan Hamza, Mohamed Sabry Zhao, Yan BMC Complement Altern Med Research Article BACKGROUND: Numerous studies have demonstrated that autophagy plays a vital role in maintaining cellular homeostasis. Interestingly, several anticancer agents were found to exert their anticancer effects by triggering autophagy. Emerging data suggest that autophagy represents a novel mechanism that can be exploited for therapeutic benefit. Pharmacologically active natural compounds such as those from marine, terrestrial plants and animals represent a promising resource for novel anticancer drugs. There are several prominent examples from the past proving the success of natural products and derivatives exhibiting anticancer activity. Helenalin, a sesquiterpene lactone has been demonstrated to have potent anti-inflammatory and antitumor activity. Albeit previous studies demonstrating helenalin’s multi modal action on cellular proliferative and apoptosis, the mechanisms underlying its action are largely unexplained. METHODS: To deduce the mechanistic action of helenalin, cancer cells were treated with the drug at various concentrations and time intervals. Using western blot, FACS analysis, overexpression and knockdown studies, cellular signaling pathways were interrogated focusing on apoptosis and autophagy markers. RESULTS: We show here that helenalin induces sub-G1 arrest, apoptosis, caspase cleavage and increases the levels of the autophagic markers. Suppression of caspase cleavage by the pan caspase inhibitor, Z-VAD-fmk, suppressed induction of LC3-B and Atg12 and reduced autophagic cell death, indicating caspase activity was essential for autophagic cell death induced by helenalin. Additionally, helenalin suppressed NF-κB p65 expression in a dose and time dependent manner. Exogenous overexpression of p65 was accompanied by reduced levels of cell death whereas siRNA mediated suppression led to augmented levels of caspase cleavage, autophagic cell death markers and increased cell death. CONCLUSIONS: Taken together, these results show that helenalin mediated autophagic cell death entails inhibition of NF-κB p65, thus providing a promising approach for the treatment of cancers with aberrant activation of the NF-κB pathway. BioMed Central 2012-07-11 /pmc/articles/PMC3464891/ /pubmed/22784363 http://dx.doi.org/10.1186/1472-6882-12-93 Text en Copyright ©2012 Lim et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Lim, Chuan Bian Fu, Pan You Ky, Nung Zhu, Hong Shuang Feng, XiaoLing Li, Jinming Srinivasan, Kandhadayar Gopalan Hamza, Mohamed Sabry Zhao, Yan NF-κB p65 repression by the sesquiterpene lactone, Helenalin, contributes to the induction of autophagy cell death |
title | NF-κB p65 repression by the sesquiterpene lactone, Helenalin, contributes to the induction of autophagy cell death |
title_full | NF-κB p65 repression by the sesquiterpene lactone, Helenalin, contributes to the induction of autophagy cell death |
title_fullStr | NF-κB p65 repression by the sesquiterpene lactone, Helenalin, contributes to the induction of autophagy cell death |
title_full_unstemmed | NF-κB p65 repression by the sesquiterpene lactone, Helenalin, contributes to the induction of autophagy cell death |
title_short | NF-κB p65 repression by the sesquiterpene lactone, Helenalin, contributes to the induction of autophagy cell death |
title_sort | nf-κb p65 repression by the sesquiterpene lactone, helenalin, contributes to the induction of autophagy cell death |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3464891/ https://www.ncbi.nlm.nih.gov/pubmed/22784363 http://dx.doi.org/10.1186/1472-6882-12-93 |
work_keys_str_mv | AT limchuanbian nfkbp65repressionbythesesquiterpenelactonehelenalincontributestotheinductionofautophagycelldeath AT fupanyou nfkbp65repressionbythesesquiterpenelactonehelenalincontributestotheinductionofautophagycelldeath AT kynung nfkbp65repressionbythesesquiterpenelactonehelenalincontributestotheinductionofautophagycelldeath AT zhuhongshuang nfkbp65repressionbythesesquiterpenelactonehelenalincontributestotheinductionofautophagycelldeath AT fengxiaoling nfkbp65repressionbythesesquiterpenelactonehelenalincontributestotheinductionofautophagycelldeath AT lijinming nfkbp65repressionbythesesquiterpenelactonehelenalincontributestotheinductionofautophagycelldeath AT srinivasankandhadayargopalan nfkbp65repressionbythesesquiterpenelactonehelenalincontributestotheinductionofautophagycelldeath AT hamzamohamedsabry nfkbp65repressionbythesesquiterpenelactonehelenalincontributestotheinductionofautophagycelldeath AT zhaoyan nfkbp65repressionbythesesquiterpenelactonehelenalincontributestotheinductionofautophagycelldeath |