Cargando…
Effect of positional dependence and alignment strategy on modeling transcription factor binding sites
BACKGROUND: Many consensus-based and Position Weight Matrix-based methods for recognizing transcription factor binding sites (TFBS) are not well suited to the variability in the lengths of binding sites. Besides, many methods discard known binding sites while building the model. Moreover, the impact...
Autores principales: | Quader, Saad, Huang, Chun-Hsi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3465234/ https://www.ncbi.nlm.nih.gov/pubmed/22748199 http://dx.doi.org/10.1186/1756-0500-5-340 |
Ejemplares similares
-
LASAGNA: A novel algorithm for transcription factor binding site alignment
por: Lee, Chih, et al.
Publicado: (2013) -
Searching for transcription factor binding sites in vector spaces
por: Lee, Chih, et al.
Publicado: (2012) -
MONKEY: identifying conserved transcription-factor binding sites in
multiple alignments using a binding site-specific evolutionary model
por: Moses, Alan M, et al.
Publicado: (2004) -
Positional distribution of transcription factor binding sites in Arabidopsis thaliana
por: Yu, Chun-Ping, et al.
Publicado: (2016) -
Positional distribution of human transcription factor binding sites
por: Koudritsky, Mark, et al.
Publicado: (2008)