Cargando…
Degradable copolymer based on amphiphilic N-octyl-N-quatenary chitosan and low-molecular weight polyethylenimine for gene delivery
BACKGROUND: Chitosan shows particularly high biocompatibility and fairly low cytotoxicity. However, chitosan is insoluble at physiological pH. Moreover, it lacks charge, so shows poor transfection. In order to develop a new type of gene vector with high transfection efficiency and low cytotoxicity,...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3469101/ https://www.ncbi.nlm.nih.gov/pubmed/23071395 http://dx.doi.org/10.2147/IJN.S36179 |
Sumario: | BACKGROUND: Chitosan shows particularly high biocompatibility and fairly low cytotoxicity. However, chitosan is insoluble at physiological pH. Moreover, it lacks charge, so shows poor transfection. In order to develop a new type of gene vector with high transfection efficiency and low cytotoxicity, amphiphilic chitosan was synthesized and linked with low-molecular weight polyethylenimine (PEI). METHODS: We first synthesized amphiphilic chitosan – N-octyl-N-quatenary chitosan (OTMCS), then prepared degradable PEI derivates by cross-linking low-molecular weight PEI with amphiphilic chitosan to produce a new polymeric gene vector (OTMCS–PEI). The new gene vector was characterized by various physicochemical methods. We also determined its cytotoxicity and gene transfecton efficiency in vitro and in vivo. RESULTS: The vector showed controlled degradation. It was very stable and showed excellent buffering capacity. The particle sizes of the OTMCS–PEI/DNA complexes were around 150–200 nm with proper zeta potentials from 10 mV to 30 mV. The polymer could protect plasmid DNA from being digested by DNase I at a concentration of 2.25 U DNase I/μg DNA. Furthermore, they were resistant to dissociation induced by 50% fetal bovine serum and 1100 μg/mL sodium heparin. OTMCS–PEI revealed lower cytotoxicity, even at higher doses. Compared with PEI 25 KDa, the OTMCS–PEI/DNA complexes also showed higher transfection efficiency in vitro and in vivo. CONCLUSION: OTMCS–PEI was a potential candidate as a safe and efficient gene vector for gene therapy. |
---|