Cargando…
Influence of the ratio of gate length to drain-to-source distance on the electron mobility in AlGaN/AlN/GaN heterostructure field-effect transistors
Using measured capacitance-voltage curves with different gate lengths and current–voltage characteristics at low drain-to-source voltage for the AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) of different drain-to-source distances, we found that the dominant scattering mechanism in A...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3477020/ https://www.ncbi.nlm.nih.gov/pubmed/22856465 http://dx.doi.org/10.1186/1556-276X-7-434 |
Sumario: | Using measured capacitance-voltage curves with different gate lengths and current–voltage characteristics at low drain-to-source voltage for the AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) of different drain-to-source distances, we found that the dominant scattering mechanism in AlGaN/AlN/GaN HFETs is determined by the ratio of gate length to drain-to-source distance. For devices with small ratio (here, less than 1/2), polarization Coulomb field scattering dominates electron mobility. However, for devices with large ratio (here, more than 1/2), longitudinal optical (LO) phonon scattering and interface roughness scattering are dominant. The reason is closely related to polarization Coulomb field scattering. |
---|