Cargando…

Inhibition of Hepatitis B Virus and Induction of Hepatoma Cell Apoptosis by ASGPR-Directed Delivery of shRNAs

Hepatitis B virus (HBV) infection is a worldwide liver disease and nearly 25% of chronic HBV infections terminate in hepatocellular carcinoma (HCC). Currently, there is no effective therapy to inhibit HBV replication and to eliminate hepatoma cells, making it highly desired to develop novel therapie...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Jingwei, Huang, Chunmei, Yao, Xinxin, Shi, Chuan, Sun, Lifang, Yuan, Lu, Lei, Ping, Zhu, Huifen, Liu, Hongbo, Wu, Xiongwen, Ning, Qin, Zhou, Chun, Shen, Guanxin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3477153/
https://www.ncbi.nlm.nih.gov/pubmed/23094023
http://dx.doi.org/10.1371/journal.pone.0046096
Descripción
Sumario:Hepatitis B virus (HBV) infection is a worldwide liver disease and nearly 25% of chronic HBV infections terminate in hepatocellular carcinoma (HCC). Currently, there is no effective therapy to inhibit HBV replication and to eliminate hepatoma cells, making it highly desired to develop novel therapies for these two stages of the HBV-caused detrimental disease. Recently, short hairpin RNA (shRNA) has emerged as a potential therapy for virus-infected disease and cancer. Here, we have generated a shRNA, pGenesil-siHBV4, which effectively inhibits HBV replication in the human hepatoma cell line HepG2.2.15. The inhibitory effects of pGenesil-siHBV4 are manifested by the decrease of both the HBV mRNA level and the protein levels of the secreted HBV surface antigen (HBsAg) and HBV e antigen (HBeAg), and by the reduction of secreted HBV DNA. Using mouse hydrodynamic tail vein injection, we demonstrate that pGenesil-siHBV4 is effective in inhibiting HBV replication in vivo. Because survivin plays a key role in cancer cell escape from apoptosis, we further generated pGenesil-siSurvivin, a survivin-silencing shRNA, and showed its effect of triggering apoptosis of HBV-containing hepatoma cells. To develop targeted shRNA therapy, we have identified that as a specific binder of the asialoglycoprotein receptor (ASGPR), jetPEI-Hepatocyte delivers pGenesil-siHBV4 and pGenesil-siSurvivin specifically to hepatocytes, not other types of cells. Finally, co-transfection of pGenesil-siHBV4 and pGenesil-siSurvivin exerts synergistic effects in inducing hepatoma cell apoptosis, a novel approach to eliminate hepatoma by downregulating survivin via multiple mechanisms. The application of these novel shRNAs with the jetPEI-Hepatocyte targeting strategy demonstrates the proof-of-principle for a promising approach to inhibit HBV replication and eliminate hepatoma cells with high specificity.