Cargando…
Immune Modulation Mediated by Cryptococcal Laccase Promotes Pulmonary Growth and Brain Dissemination of Virulent Cryptococcus neoformans in Mice
C. neoformans is a leading cause of fatal mycosis linked to CNS dissemination. Laccase, encoded by the LAC1 gene, is an important virulence factor implicated in brain dissemination yet little is known about the mechanism(s) accounting for this observation. Here, we investigated whether the presence...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478276/ https://www.ncbi.nlm.nih.gov/pubmed/23110112 http://dx.doi.org/10.1371/journal.pone.0047853 |
_version_ | 1782247302574899200 |
---|---|
author | Qiu, Yafeng Davis, Michael J. Dayrit, Jeremy K. Hadd, Zachary Meister, Daniel L. Osterholzer, John J. Williamson, Peter R. Olszewski, Michal A. |
author_facet | Qiu, Yafeng Davis, Michael J. Dayrit, Jeremy K. Hadd, Zachary Meister, Daniel L. Osterholzer, John J. Williamson, Peter R. Olszewski, Michal A. |
author_sort | Qiu, Yafeng |
collection | PubMed |
description | C. neoformans is a leading cause of fatal mycosis linked to CNS dissemination. Laccase, encoded by the LAC1 gene, is an important virulence factor implicated in brain dissemination yet little is known about the mechanism(s) accounting for this observation. Here, we investigated whether the presence or absence of laccase altered the local immune response in the lungs by comparing infections with the highly virulent strain, H99 (which expresses laccase) and mutant strain of H99 deficient in laccase (lac1Δ) in a mouse model of pulmonary infection. We found that LAC1 gene deletion decreased the pulmonary fungal burden and abolished CNS dissemination at weeks 2 and 3. Furthermore, LAC1 deletion lead to: 1) diminished pulmonary eosinophilia; 2) increased accumulation of CD4+ and CD8+ T cells; 3) increased Th1 and Th17 cytokines yet decreased Th2 cytokines; and 4) lung macrophage shifting of the lung macrophage phenotype from M2- towards M1-type activation. Next, we used adoptively transferred CD4+ T cells isolated from pulmonary lymph nodes of mice infected with either lac1Δ or H99 to evaluate the role of laccase-induced immunomodulation on CNS dissemination. We found that in comparison to PBS treated mice, adoptively transferred CD4+ T cells isolated from lac1Δ-infected mice decreased CNS dissemination, while those isolated from H99-infected mice increased CNS dissemination. Collectively, our findings reveal that immune modulation away from Th1/Th17 responses and towards Th2 responses represents a novel mechanism through which laccase can contribute to cryptococcal virulence. Furthermore, our data support the hypothesis that laccase-induced changes in polarization of CD4+ T cells contribute to CNS dissemination. |
format | Online Article Text |
id | pubmed-3478276 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-34782762012-10-29 Immune Modulation Mediated by Cryptococcal Laccase Promotes Pulmonary Growth and Brain Dissemination of Virulent Cryptococcus neoformans in Mice Qiu, Yafeng Davis, Michael J. Dayrit, Jeremy K. Hadd, Zachary Meister, Daniel L. Osterholzer, John J. Williamson, Peter R. Olszewski, Michal A. PLoS One Research Article C. neoformans is a leading cause of fatal mycosis linked to CNS dissemination. Laccase, encoded by the LAC1 gene, is an important virulence factor implicated in brain dissemination yet little is known about the mechanism(s) accounting for this observation. Here, we investigated whether the presence or absence of laccase altered the local immune response in the lungs by comparing infections with the highly virulent strain, H99 (which expresses laccase) and mutant strain of H99 deficient in laccase (lac1Δ) in a mouse model of pulmonary infection. We found that LAC1 gene deletion decreased the pulmonary fungal burden and abolished CNS dissemination at weeks 2 and 3. Furthermore, LAC1 deletion lead to: 1) diminished pulmonary eosinophilia; 2) increased accumulation of CD4+ and CD8+ T cells; 3) increased Th1 and Th17 cytokines yet decreased Th2 cytokines; and 4) lung macrophage shifting of the lung macrophage phenotype from M2- towards M1-type activation. Next, we used adoptively transferred CD4+ T cells isolated from pulmonary lymph nodes of mice infected with either lac1Δ or H99 to evaluate the role of laccase-induced immunomodulation on CNS dissemination. We found that in comparison to PBS treated mice, adoptively transferred CD4+ T cells isolated from lac1Δ-infected mice decreased CNS dissemination, while those isolated from H99-infected mice increased CNS dissemination. Collectively, our findings reveal that immune modulation away from Th1/Th17 responses and towards Th2 responses represents a novel mechanism through which laccase can contribute to cryptococcal virulence. Furthermore, our data support the hypothesis that laccase-induced changes in polarization of CD4+ T cells contribute to CNS dissemination. Public Library of Science 2012-10-22 /pmc/articles/PMC3478276/ /pubmed/23110112 http://dx.doi.org/10.1371/journal.pone.0047853 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. |
spellingShingle | Research Article Qiu, Yafeng Davis, Michael J. Dayrit, Jeremy K. Hadd, Zachary Meister, Daniel L. Osterholzer, John J. Williamson, Peter R. Olszewski, Michal A. Immune Modulation Mediated by Cryptococcal Laccase Promotes Pulmonary Growth and Brain Dissemination of Virulent Cryptococcus neoformans in Mice |
title | Immune Modulation Mediated by Cryptococcal Laccase Promotes Pulmonary Growth and Brain Dissemination of Virulent Cryptococcus neoformans in Mice |
title_full | Immune Modulation Mediated by Cryptococcal Laccase Promotes Pulmonary Growth and Brain Dissemination of Virulent Cryptococcus neoformans in Mice |
title_fullStr | Immune Modulation Mediated by Cryptococcal Laccase Promotes Pulmonary Growth and Brain Dissemination of Virulent Cryptococcus neoformans in Mice |
title_full_unstemmed | Immune Modulation Mediated by Cryptococcal Laccase Promotes Pulmonary Growth and Brain Dissemination of Virulent Cryptococcus neoformans in Mice |
title_short | Immune Modulation Mediated by Cryptococcal Laccase Promotes Pulmonary Growth and Brain Dissemination of Virulent Cryptococcus neoformans in Mice |
title_sort | immune modulation mediated by cryptococcal laccase promotes pulmonary growth and brain dissemination of virulent cryptococcus neoformans in mice |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478276/ https://www.ncbi.nlm.nih.gov/pubmed/23110112 http://dx.doi.org/10.1371/journal.pone.0047853 |
work_keys_str_mv | AT qiuyafeng immunemodulationmediatedbycryptococcallaccasepromotespulmonarygrowthandbraindisseminationofvirulentcryptococcusneoformansinmice AT davismichaelj immunemodulationmediatedbycryptococcallaccasepromotespulmonarygrowthandbraindisseminationofvirulentcryptococcusneoformansinmice AT dayritjeremyk immunemodulationmediatedbycryptococcallaccasepromotespulmonarygrowthandbraindisseminationofvirulentcryptococcusneoformansinmice AT haddzachary immunemodulationmediatedbycryptococcallaccasepromotespulmonarygrowthandbraindisseminationofvirulentcryptococcusneoformansinmice AT meisterdaniell immunemodulationmediatedbycryptococcallaccasepromotespulmonarygrowthandbraindisseminationofvirulentcryptococcusneoformansinmice AT osterholzerjohnj immunemodulationmediatedbycryptococcallaccasepromotespulmonarygrowthandbraindisseminationofvirulentcryptococcusneoformansinmice AT williamsonpeterr immunemodulationmediatedbycryptococcallaccasepromotespulmonarygrowthandbraindisseminationofvirulentcryptococcusneoformansinmice AT olszewskimichala immunemodulationmediatedbycryptococcallaccasepromotespulmonarygrowthandbraindisseminationofvirulentcryptococcusneoformansinmice |