Cargando…
Basis for allosteric open-state stabilization of voltage-gated potassium channels by intracellular cations
The open state of voltage-gated potassium (Kv) channels is associated with an increased stability relative to the pre-open closed states and is reflected by a slowing of OFF gating currents after channel opening. The basis for this stabilization is usually assigned to intrinsic structural features o...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3483119/ https://www.ncbi.nlm.nih.gov/pubmed/23071269 http://dx.doi.org/10.1085/jgp.201210823 |
_version_ | 1782247945721085952 |
---|---|
author | Goodchild, Samuel J. Xu, Hongjian Es-Salah-Lamoureux, Zeineb Ahern, Christopher A. Fedida, David |
author_facet | Goodchild, Samuel J. Xu, Hongjian Es-Salah-Lamoureux, Zeineb Ahern, Christopher A. Fedida, David |
author_sort | Goodchild, Samuel J. |
collection | PubMed |
description | The open state of voltage-gated potassium (Kv) channels is associated with an increased stability relative to the pre-open closed states and is reflected by a slowing of OFF gating currents after channel opening. The basis for this stabilization is usually assigned to intrinsic structural features of the open pore. We have studied the gating currents of Kv1.2 channels and found that the stabilization of the open state is instead conferred largely by the presence of cations occupying the inner cavity of the channel. Large impermeant intracellular cations such as N-methyl-d-glucamine (NMG(+)) and tetraethylammonium cause severe slowing of channel closure and gating currents, whereas the smaller cation, Cs(+), displays a more moderate effect on voltage sensor return. A nonconducting mutant also displays significant open state stabilization in the presence of intracellular K(+), suggesting that K(+) ions in the intracellular cavity also slow pore closure. A mutation in the S6 segment used previously to enlarge the inner cavity (Kv1.2-I402C) relieves the slowing of OFF gating currents in the presence of the large NMG(+) ion, suggesting that the interaction site for stabilizing ions resides within the inner cavity and creates an energetic barrier to pore closure. The physiological significance of ionic occupation of the inner cavity is underscored by the threefold slowing of ionic current deactivation in the wild-type channel compared with Kv1.2-I402C. The data suggest that internal ions, including physiological concentrations of K(+), allosterically regulate the deactivation kinetics of the Kv1.2 channel by impairing pore closure and limiting the return of voltage sensors. This may represent a primary mechanism by which Kv channel deactivation kinetics is linked to ion permeation and reveals a novel role for channel inner cavity residues to indirectly regulate voltage sensor dynamics. |
format | Online Article Text |
id | pubmed-3483119 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-34831192013-05-01 Basis for allosteric open-state stabilization of voltage-gated potassium channels by intracellular cations Goodchild, Samuel J. Xu, Hongjian Es-Salah-Lamoureux, Zeineb Ahern, Christopher A. Fedida, David J Gen Physiol Article The open state of voltage-gated potassium (Kv) channels is associated with an increased stability relative to the pre-open closed states and is reflected by a slowing of OFF gating currents after channel opening. The basis for this stabilization is usually assigned to intrinsic structural features of the open pore. We have studied the gating currents of Kv1.2 channels and found that the stabilization of the open state is instead conferred largely by the presence of cations occupying the inner cavity of the channel. Large impermeant intracellular cations such as N-methyl-d-glucamine (NMG(+)) and tetraethylammonium cause severe slowing of channel closure and gating currents, whereas the smaller cation, Cs(+), displays a more moderate effect on voltage sensor return. A nonconducting mutant also displays significant open state stabilization in the presence of intracellular K(+), suggesting that K(+) ions in the intracellular cavity also slow pore closure. A mutation in the S6 segment used previously to enlarge the inner cavity (Kv1.2-I402C) relieves the slowing of OFF gating currents in the presence of the large NMG(+) ion, suggesting that the interaction site for stabilizing ions resides within the inner cavity and creates an energetic barrier to pore closure. The physiological significance of ionic occupation of the inner cavity is underscored by the threefold slowing of ionic current deactivation in the wild-type channel compared with Kv1.2-I402C. The data suggest that internal ions, including physiological concentrations of K(+), allosterically regulate the deactivation kinetics of the Kv1.2 channel by impairing pore closure and limiting the return of voltage sensors. This may represent a primary mechanism by which Kv channel deactivation kinetics is linked to ion permeation and reveals a novel role for channel inner cavity residues to indirectly regulate voltage sensor dynamics. The Rockefeller University Press 2012-11 /pmc/articles/PMC3483119/ /pubmed/23071269 http://dx.doi.org/10.1085/jgp.201210823 Text en © 2012 Goodchild et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/). |
spellingShingle | Article Goodchild, Samuel J. Xu, Hongjian Es-Salah-Lamoureux, Zeineb Ahern, Christopher A. Fedida, David Basis for allosteric open-state stabilization of voltage-gated potassium channels by intracellular cations |
title | Basis for allosteric open-state stabilization of voltage-gated potassium channels by intracellular cations |
title_full | Basis for allosteric open-state stabilization of voltage-gated potassium channels by intracellular cations |
title_fullStr | Basis for allosteric open-state stabilization of voltage-gated potassium channels by intracellular cations |
title_full_unstemmed | Basis for allosteric open-state stabilization of voltage-gated potassium channels by intracellular cations |
title_short | Basis for allosteric open-state stabilization of voltage-gated potassium channels by intracellular cations |
title_sort | basis for allosteric open-state stabilization of voltage-gated potassium channels by intracellular cations |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3483119/ https://www.ncbi.nlm.nih.gov/pubmed/23071269 http://dx.doi.org/10.1085/jgp.201210823 |
work_keys_str_mv | AT goodchildsamuelj basisforallostericopenstatestabilizationofvoltagegatedpotassiumchannelsbyintracellularcations AT xuhongjian basisforallostericopenstatestabilizationofvoltagegatedpotassiumchannelsbyintracellularcations AT essalahlamoureuxzeineb basisforallostericopenstatestabilizationofvoltagegatedpotassiumchannelsbyintracellularcations AT ahernchristophera basisforallostericopenstatestabilizationofvoltagegatedpotassiumchannelsbyintracellularcations AT fedidadavid basisforallostericopenstatestabilizationofvoltagegatedpotassiumchannelsbyintracellularcations |