Cargando…

Asymmetric Divergence in Structure and Function of HCN Channel Duplicates in Ciona intestinalis

Hyperpolarization-activated Cyclic Nucleotide (HCN) channels are voltage-gated cation channels and are critical for regulation of membrane potential in electrically active cells. To understand the evolution of these channels at the molecular level, we cloned and examined two of three HCN homologs of...

Descripción completa

Detalles Bibliográficos
Autores principales: Jackson, Heather A., Hegle, Andrew, Nazzari, Hamed, Jegla, Timothy, Accili, Eric A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3487815/
https://www.ncbi.nlm.nih.gov/pubmed/23133599
http://dx.doi.org/10.1371/journal.pone.0047590
Descripción
Sumario:Hyperpolarization-activated Cyclic Nucleotide (HCN) channels are voltage-gated cation channels and are critical for regulation of membrane potential in electrically active cells. To understand the evolution of these channels at the molecular level, we cloned and examined two of three HCN homologs of the urochordate Ciona intestinalis (ciHCNa and ciHCNb). ciHCNa is like mammalian HCNs in that it possesses similar electrical function and undergoes N-glycosylation of a sequon near the pore. ciHCNb lacks the pore-associated N-glycosylation sequon and is predictably not N-glycosylated, and it also has an unusual gating phenotype in which the channel's voltage-sensitive gate appears to close incompletely. Together with previous findings, the data support an evolutionary trajectory in which an HCN ancestor underwent lineage-specific duplication in Ciona, to yield one HCN with most features that are conserved with the mammalian HCNs and another HCN that has been uniquely altered.