Cargando…
The bacterial ribonuclease P holoenzyme requires specific, conserved residues for efficient catalysis and substrate positioning
RNase P is an RNA-based enzyme primarily responsible for 5′-end pre-tRNA processing. A structure of the bacterial RNase P holoenzyme in complex with tRNA(Phe) revealed the structural basis for substrate recognition, identified the active site location, and showed how the protein component increases...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3488217/ https://www.ncbi.nlm.nih.gov/pubmed/22904083 http://dx.doi.org/10.1093/nar/gks744 |
_version_ | 1782248584196915200 |
---|---|
author | Reiter, Nicholas J. Osterman, Amy K. Mondragón, Alfonso |
author_facet | Reiter, Nicholas J. Osterman, Amy K. Mondragón, Alfonso |
author_sort | Reiter, Nicholas J. |
collection | PubMed |
description | RNase P is an RNA-based enzyme primarily responsible for 5′-end pre-tRNA processing. A structure of the bacterial RNase P holoenzyme in complex with tRNA(Phe) revealed the structural basis for substrate recognition, identified the active site location, and showed how the protein component increases functionality. The active site includes at least two metal ions, a universal uridine (U52), and P RNA backbone moieties, but it is unclear whether an adjacent, bacterially conserved protein loop (residues 52–57) participates in catalysis. Here, mutagenesis combined with single-turnover reaction kinetics demonstrate that point mutations in this loop have either no or modest effects on catalytic efficiency. Similarly, amino acid changes in the ‘RNR’ region, which represent the most conserved region of bacterial RNase P proteins, exhibit negligible changes in catalytic efficiency. However, U52 and two bacterially conserved protein residues (F17 and R89) are essential for efficient Thermotoga maritima RNase P activity. The U52 nucleotide binds a metal ion at the active site, whereas F17 and R89 are positioned >20 Å from the cleavage site, probably making contacts with N(−4) and N(−5) nucleotides of the pre-tRNA 5′-leader. This suggests a synergistic coupling between transition state formation and substrate positioning via interactions with the leader. |
format | Online Article Text |
id | pubmed-3488217 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-34882172012-11-06 The bacterial ribonuclease P holoenzyme requires specific, conserved residues for efficient catalysis and substrate positioning Reiter, Nicholas J. Osterman, Amy K. Mondragón, Alfonso Nucleic Acids Res Nucleic Acid Enzymes RNase P is an RNA-based enzyme primarily responsible for 5′-end pre-tRNA processing. A structure of the bacterial RNase P holoenzyme in complex with tRNA(Phe) revealed the structural basis for substrate recognition, identified the active site location, and showed how the protein component increases functionality. The active site includes at least two metal ions, a universal uridine (U52), and P RNA backbone moieties, but it is unclear whether an adjacent, bacterially conserved protein loop (residues 52–57) participates in catalysis. Here, mutagenesis combined with single-turnover reaction kinetics demonstrate that point mutations in this loop have either no or modest effects on catalytic efficiency. Similarly, amino acid changes in the ‘RNR’ region, which represent the most conserved region of bacterial RNase P proteins, exhibit negligible changes in catalytic efficiency. However, U52 and two bacterially conserved protein residues (F17 and R89) are essential for efficient Thermotoga maritima RNase P activity. The U52 nucleotide binds a metal ion at the active site, whereas F17 and R89 are positioned >20 Å from the cleavage site, probably making contacts with N(−4) and N(−5) nucleotides of the pre-tRNA 5′-leader. This suggests a synergistic coupling between transition state formation and substrate positioning via interactions with the leader. Oxford University Press 2012-11 2012-08-13 /pmc/articles/PMC3488217/ /pubmed/22904083 http://dx.doi.org/10.1093/nar/gks744 Text en © The Author(s) 2012. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Nucleic Acid Enzymes Reiter, Nicholas J. Osterman, Amy K. Mondragón, Alfonso The bacterial ribonuclease P holoenzyme requires specific, conserved residues for efficient catalysis and substrate positioning |
title | The bacterial ribonuclease P holoenzyme requires specific, conserved residues for efficient catalysis and substrate positioning |
title_full | The bacterial ribonuclease P holoenzyme requires specific, conserved residues for efficient catalysis and substrate positioning |
title_fullStr | The bacterial ribonuclease P holoenzyme requires specific, conserved residues for efficient catalysis and substrate positioning |
title_full_unstemmed | The bacterial ribonuclease P holoenzyme requires specific, conserved residues for efficient catalysis and substrate positioning |
title_short | The bacterial ribonuclease P holoenzyme requires specific, conserved residues for efficient catalysis and substrate positioning |
title_sort | bacterial ribonuclease p holoenzyme requires specific, conserved residues for efficient catalysis and substrate positioning |
topic | Nucleic Acid Enzymes |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3488217/ https://www.ncbi.nlm.nih.gov/pubmed/22904083 http://dx.doi.org/10.1093/nar/gks744 |
work_keys_str_mv | AT reiternicholasj thebacterialribonucleasepholoenzymerequiresspecificconservedresiduesforefficientcatalysisandsubstratepositioning AT ostermanamyk thebacterialribonucleasepholoenzymerequiresspecificconservedresiduesforefficientcatalysisandsubstratepositioning AT mondragonalfonso thebacterialribonucleasepholoenzymerequiresspecificconservedresiduesforefficientcatalysisandsubstratepositioning AT reiternicholasj bacterialribonucleasepholoenzymerequiresspecificconservedresiduesforefficientcatalysisandsubstratepositioning AT ostermanamyk bacterialribonucleasepholoenzymerequiresspecificconservedresiduesforefficientcatalysisandsubstratepositioning AT mondragonalfonso bacterialribonucleasepholoenzymerequiresspecificconservedresiduesforefficientcatalysisandsubstratepositioning |