Cargando…

A hybrid G-quadruplex structure formed between RNA and DNA explains the extraordinary stability of the mitochondrial R-loop

In human mitochondria the transcription machinery generates the RNA primers needed for initiation of DNA replication. A critical feature of the leading-strand origin of mitochondrial DNA replication is a CG-rich element denoted conserved sequence block II (CSB II). During transcription of CSB II, a...

Descripción completa

Detalles Bibliográficos
Autores principales: Wanrooij, Paulina H., Uhler, Jay P., Shi, Yonghong, Westerlund, Fredrik, Falkenberg, Maria, Gustafsson, Claes M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3488243/
https://www.ncbi.nlm.nih.gov/pubmed/22965135
http://dx.doi.org/10.1093/nar/gks802
_version_ 1782248590246150144
author Wanrooij, Paulina H.
Uhler, Jay P.
Shi, Yonghong
Westerlund, Fredrik
Falkenberg, Maria
Gustafsson, Claes M.
author_facet Wanrooij, Paulina H.
Uhler, Jay P.
Shi, Yonghong
Westerlund, Fredrik
Falkenberg, Maria
Gustafsson, Claes M.
author_sort Wanrooij, Paulina H.
collection PubMed
description In human mitochondria the transcription machinery generates the RNA primers needed for initiation of DNA replication. A critical feature of the leading-strand origin of mitochondrial DNA replication is a CG-rich element denoted conserved sequence block II (CSB II). During transcription of CSB II, a G-quadruplex structure forms in the nascent RNA, which stimulates transcription termination and primer formation. Previous studies have shown that the newly synthesized primers form a stable and persistent RNA–DNA hybrid, a R-loop, near the leading-strand origin of DNA replication. We here demonstrate that the unusual behavior of the RNA primer is explained by the formation of a stable G-quadruplex structure, involving the CSB II region in both the nascent RNA and the non-template DNA strand. Based on our data, we suggest that G-quadruplex formation between nascent RNA and the non-template DNA strand may be a regulated event, which decides the fate of RNA primers and ultimately the rate of initiation of DNA synthesis in human mitochondria.
format Online
Article
Text
id pubmed-3488243
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-34882432012-11-06 A hybrid G-quadruplex structure formed between RNA and DNA explains the extraordinary stability of the mitochondrial R-loop Wanrooij, Paulina H. Uhler, Jay P. Shi, Yonghong Westerlund, Fredrik Falkenberg, Maria Gustafsson, Claes M. Nucleic Acids Res Genome Integrity, Repair and Replication In human mitochondria the transcription machinery generates the RNA primers needed for initiation of DNA replication. A critical feature of the leading-strand origin of mitochondrial DNA replication is a CG-rich element denoted conserved sequence block II (CSB II). During transcription of CSB II, a G-quadruplex structure forms in the nascent RNA, which stimulates transcription termination and primer formation. Previous studies have shown that the newly synthesized primers form a stable and persistent RNA–DNA hybrid, a R-loop, near the leading-strand origin of DNA replication. We here demonstrate that the unusual behavior of the RNA primer is explained by the formation of a stable G-quadruplex structure, involving the CSB II region in both the nascent RNA and the non-template DNA strand. Based on our data, we suggest that G-quadruplex formation between nascent RNA and the non-template DNA strand may be a regulated event, which decides the fate of RNA primers and ultimately the rate of initiation of DNA synthesis in human mitochondria. Oxford University Press 2012-11 2012-09-08 /pmc/articles/PMC3488243/ /pubmed/22965135 http://dx.doi.org/10.1093/nar/gks802 Text en © The Author(s) 2012. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Genome Integrity, Repair and Replication
Wanrooij, Paulina H.
Uhler, Jay P.
Shi, Yonghong
Westerlund, Fredrik
Falkenberg, Maria
Gustafsson, Claes M.
A hybrid G-quadruplex structure formed between RNA and DNA explains the extraordinary stability of the mitochondrial R-loop
title A hybrid G-quadruplex structure formed between RNA and DNA explains the extraordinary stability of the mitochondrial R-loop
title_full A hybrid G-quadruplex structure formed between RNA and DNA explains the extraordinary stability of the mitochondrial R-loop
title_fullStr A hybrid G-quadruplex structure formed between RNA and DNA explains the extraordinary stability of the mitochondrial R-loop
title_full_unstemmed A hybrid G-quadruplex structure formed between RNA and DNA explains the extraordinary stability of the mitochondrial R-loop
title_short A hybrid G-quadruplex structure formed between RNA and DNA explains the extraordinary stability of the mitochondrial R-loop
title_sort hybrid g-quadruplex structure formed between rna and dna explains the extraordinary stability of the mitochondrial r-loop
topic Genome Integrity, Repair and Replication
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3488243/
https://www.ncbi.nlm.nih.gov/pubmed/22965135
http://dx.doi.org/10.1093/nar/gks802
work_keys_str_mv AT wanrooijpaulinah ahybridgquadruplexstructureformedbetweenrnaanddnaexplainstheextraordinarystabilityofthemitochondrialrloop
AT uhlerjayp ahybridgquadruplexstructureformedbetweenrnaanddnaexplainstheextraordinarystabilityofthemitochondrialrloop
AT shiyonghong ahybridgquadruplexstructureformedbetweenrnaanddnaexplainstheextraordinarystabilityofthemitochondrialrloop
AT westerlundfredrik ahybridgquadruplexstructureformedbetweenrnaanddnaexplainstheextraordinarystabilityofthemitochondrialrloop
AT falkenbergmaria ahybridgquadruplexstructureformedbetweenrnaanddnaexplainstheextraordinarystabilityofthemitochondrialrloop
AT gustafssonclaesm ahybridgquadruplexstructureformedbetweenrnaanddnaexplainstheextraordinarystabilityofthemitochondrialrloop
AT wanrooijpaulinah hybridgquadruplexstructureformedbetweenrnaanddnaexplainstheextraordinarystabilityofthemitochondrialrloop
AT uhlerjayp hybridgquadruplexstructureformedbetweenrnaanddnaexplainstheextraordinarystabilityofthemitochondrialrloop
AT shiyonghong hybridgquadruplexstructureformedbetweenrnaanddnaexplainstheextraordinarystabilityofthemitochondrialrloop
AT westerlundfredrik hybridgquadruplexstructureformedbetweenrnaanddnaexplainstheextraordinarystabilityofthemitochondrialrloop
AT falkenbergmaria hybridgquadruplexstructureformedbetweenrnaanddnaexplainstheextraordinarystabilityofthemitochondrialrloop
AT gustafssonclaesm hybridgquadruplexstructureformedbetweenrnaanddnaexplainstheextraordinarystabilityofthemitochondrialrloop