Cargando…

Hematopoietic Stem/Progenitor Cell Proliferation and Differentiation Is Differentially Regulated by High-Density and Low-Density Lipoproteins in Mice

RATIONALE: Hematopoietic stem/progenitor cells (HSPC) are responsible for maintaining the blood system as a result of their self-renewal and multilineage differentiation capacity. Recently, studies have suggested that HDL cholesterol may inhibit and impaired cholesterol efflux may increase HSPC prol...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Yingmei, Schouteden, Sarah, Geenens, Rachel, Van Duppen, Vik, Herijgers, Paul, Holvoet, Paul, Van Veldhoven, Paul P., Verfaillie, Catherine M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3492382/
https://www.ncbi.nlm.nih.gov/pubmed/23144813
http://dx.doi.org/10.1371/journal.pone.0047286
_version_ 1782249123162882048
author Feng, Yingmei
Schouteden, Sarah
Geenens, Rachel
Van Duppen, Vik
Herijgers, Paul
Holvoet, Paul
Van Veldhoven, Paul P.
Verfaillie, Catherine M.
author_facet Feng, Yingmei
Schouteden, Sarah
Geenens, Rachel
Van Duppen, Vik
Herijgers, Paul
Holvoet, Paul
Van Veldhoven, Paul P.
Verfaillie, Catherine M.
author_sort Feng, Yingmei
collection PubMed
description RATIONALE: Hematopoietic stem/progenitor cells (HSPC) are responsible for maintaining the blood system as a result of their self-renewal and multilineage differentiation capacity. Recently, studies have suggested that HDL cholesterol may inhibit and impaired cholesterol efflux may increase HSPC proliferation and differentiation. OBJECTIVES: We hypothesized that LDL may enhance HSPC proliferation and differentiation while HDL might have the opposing effect which might influence the size of the pool of inflammatory cells. METHODS AND RESULTS: HSPC number and function were studied in hypercholesterolemic LDL receptor knockout (LDLr(−/−)) mice on high fat diet. Hypercholesterolemia was associated with increased frequency of HSPC, monocytes and granulocytes in the peripheral blood (PB). In addition, an increased proportion of BM HSPC was in G(2)M of the cell cycle, and the percentage of HSPC and granulocyte-macrophage progenitors (GMP) increased in BM of LDLr(−/−) mice. When BM Lin-Sca-1+cKit+ (i.e. “LSK”) cells were cultured in the presence of LDL in vitro we also found enhanced differentiation towards monocytes and granulocytes. Furthermore, LDL promoted lineage negative (Lin−) cells motility. The modulation by LDL on HSPC differentiation into granulocytes and motility was inhibited by inhibiting ERK phosphorylation. By contrast, when mice were infused with human apoA-I (the major apolipoprotein of HDL) or reconstituted HDL (rHDL), the frequency and proliferation of HSPC was reduced in BM in vivo. HDL also reversed the LDL-induced monocyte and granulocyte differentiation in vitro. CONCLUSION: Our data suggest that LDL and HDL have opposing effects on HSPC proliferation and differentiation. It will be of interest to determine if breakdown of HSPC homeostasis by hypercholesterolemia contributes to inflammation and atherosclerosis progression.
format Online
Article
Text
id pubmed-3492382
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-34923822012-11-09 Hematopoietic Stem/Progenitor Cell Proliferation and Differentiation Is Differentially Regulated by High-Density and Low-Density Lipoproteins in Mice Feng, Yingmei Schouteden, Sarah Geenens, Rachel Van Duppen, Vik Herijgers, Paul Holvoet, Paul Van Veldhoven, Paul P. Verfaillie, Catherine M. PLoS One Research Article RATIONALE: Hematopoietic stem/progenitor cells (HSPC) are responsible for maintaining the blood system as a result of their self-renewal and multilineage differentiation capacity. Recently, studies have suggested that HDL cholesterol may inhibit and impaired cholesterol efflux may increase HSPC proliferation and differentiation. OBJECTIVES: We hypothesized that LDL may enhance HSPC proliferation and differentiation while HDL might have the opposing effect which might influence the size of the pool of inflammatory cells. METHODS AND RESULTS: HSPC number and function were studied in hypercholesterolemic LDL receptor knockout (LDLr(−/−)) mice on high fat diet. Hypercholesterolemia was associated with increased frequency of HSPC, monocytes and granulocytes in the peripheral blood (PB). In addition, an increased proportion of BM HSPC was in G(2)M of the cell cycle, and the percentage of HSPC and granulocyte-macrophage progenitors (GMP) increased in BM of LDLr(−/−) mice. When BM Lin-Sca-1+cKit+ (i.e. “LSK”) cells were cultured in the presence of LDL in vitro we also found enhanced differentiation towards monocytes and granulocytes. Furthermore, LDL promoted lineage negative (Lin−) cells motility. The modulation by LDL on HSPC differentiation into granulocytes and motility was inhibited by inhibiting ERK phosphorylation. By contrast, when mice were infused with human apoA-I (the major apolipoprotein of HDL) or reconstituted HDL (rHDL), the frequency and proliferation of HSPC was reduced in BM in vivo. HDL also reversed the LDL-induced monocyte and granulocyte differentiation in vitro. CONCLUSION: Our data suggest that LDL and HDL have opposing effects on HSPC proliferation and differentiation. It will be of interest to determine if breakdown of HSPC homeostasis by hypercholesterolemia contributes to inflammation and atherosclerosis progression. Public Library of Science 2012-11-07 /pmc/articles/PMC3492382/ /pubmed/23144813 http://dx.doi.org/10.1371/journal.pone.0047286 Text en © 2012 Feng et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Feng, Yingmei
Schouteden, Sarah
Geenens, Rachel
Van Duppen, Vik
Herijgers, Paul
Holvoet, Paul
Van Veldhoven, Paul P.
Verfaillie, Catherine M.
Hematopoietic Stem/Progenitor Cell Proliferation and Differentiation Is Differentially Regulated by High-Density and Low-Density Lipoproteins in Mice
title Hematopoietic Stem/Progenitor Cell Proliferation and Differentiation Is Differentially Regulated by High-Density and Low-Density Lipoproteins in Mice
title_full Hematopoietic Stem/Progenitor Cell Proliferation and Differentiation Is Differentially Regulated by High-Density and Low-Density Lipoproteins in Mice
title_fullStr Hematopoietic Stem/Progenitor Cell Proliferation and Differentiation Is Differentially Regulated by High-Density and Low-Density Lipoproteins in Mice
title_full_unstemmed Hematopoietic Stem/Progenitor Cell Proliferation and Differentiation Is Differentially Regulated by High-Density and Low-Density Lipoproteins in Mice
title_short Hematopoietic Stem/Progenitor Cell Proliferation and Differentiation Is Differentially Regulated by High-Density and Low-Density Lipoproteins in Mice
title_sort hematopoietic stem/progenitor cell proliferation and differentiation is differentially regulated by high-density and low-density lipoproteins in mice
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3492382/
https://www.ncbi.nlm.nih.gov/pubmed/23144813
http://dx.doi.org/10.1371/journal.pone.0047286
work_keys_str_mv AT fengyingmei hematopoieticstemprogenitorcellproliferationanddifferentiationisdifferentiallyregulatedbyhighdensityandlowdensitylipoproteinsinmice
AT schoutedensarah hematopoieticstemprogenitorcellproliferationanddifferentiationisdifferentiallyregulatedbyhighdensityandlowdensitylipoproteinsinmice
AT geenensrachel hematopoieticstemprogenitorcellproliferationanddifferentiationisdifferentiallyregulatedbyhighdensityandlowdensitylipoproteinsinmice
AT vanduppenvik hematopoieticstemprogenitorcellproliferationanddifferentiationisdifferentiallyregulatedbyhighdensityandlowdensitylipoproteinsinmice
AT herijgerspaul hematopoieticstemprogenitorcellproliferationanddifferentiationisdifferentiallyregulatedbyhighdensityandlowdensitylipoproteinsinmice
AT holvoetpaul hematopoieticstemprogenitorcellproliferationanddifferentiationisdifferentiallyregulatedbyhighdensityandlowdensitylipoproteinsinmice
AT vanveldhovenpaulp hematopoieticstemprogenitorcellproliferationanddifferentiationisdifferentiallyregulatedbyhighdensityandlowdensitylipoproteinsinmice
AT verfailliecatherinem hematopoieticstemprogenitorcellproliferationanddifferentiationisdifferentiallyregulatedbyhighdensityandlowdensitylipoproteinsinmice