Cargando…
Production of (R)-3-Quinuclidinol by E. coli Biocatalysts Possessing NADH-Dependent 3-Quinuclidinone Reductase (QNR or bacC) from Microbacterium luteolum and Leifsonia Alcohol Dehydrogenase (LSADH)
We found two NADH-dependent reductases (QNR and bacC) in Microbacterium luteolum JCM 9174 (M. luteolum JCM 9174) that can reduce 3-quinuclidinone to optically pure (R)-(−)-3-quinuclidinol. Alcohol dehydrogenase from Leifsonia sp. (LSADH) was combined with these reductases to regenerate NAD(+) to NAD...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3497340/ https://www.ncbi.nlm.nih.gov/pubmed/23202966 http://dx.doi.org/10.3390/ijms131013542 |
_version_ | 1782249741682212864 |
---|---|
author | Isotani, Kentaro Kurokawa, Junji Itoh, Nobuya |
author_facet | Isotani, Kentaro Kurokawa, Junji Itoh, Nobuya |
author_sort | Isotani, Kentaro |
collection | PubMed |
description | We found two NADH-dependent reductases (QNR and bacC) in Microbacterium luteolum JCM 9174 (M. luteolum JCM 9174) that can reduce 3-quinuclidinone to optically pure (R)-(−)-3-quinuclidinol. Alcohol dehydrogenase from Leifsonia sp. (LSADH) was combined with these reductases to regenerate NAD(+) to NADH in situ in the presence of 2-propanol as a hydrogen donor. The reductase and LSADH genes were efficiently expressed in E. coli cells. A number of constructed E. coli biocatalysts (intact or immobilized) were applied to the resting cell reaction and optimized. Under the optimized conditions, (R)-(−)-3-quinuclidinol was synthesized from 3-quinuclidinone (15% w/v, 939 mM) giving a conversion yield of 100% for immobilized QNR. The optical purity of the (R)-(−)-3-quinuclidinol produced by the enzymatic reactions was >99.9%. Thus, E. coli biocatalysis should be useful for the practical production of the pharmaceutically important intermediate, (R)-(−)-3-quinuclidinol. |
format | Online Article Text |
id | pubmed-3497340 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Molecular Diversity Preservation International (MDPI) |
record_format | MEDLINE/PubMed |
spelling | pubmed-34973402012-11-29 Production of (R)-3-Quinuclidinol by E. coli Biocatalysts Possessing NADH-Dependent 3-Quinuclidinone Reductase (QNR or bacC) from Microbacterium luteolum and Leifsonia Alcohol Dehydrogenase (LSADH) Isotani, Kentaro Kurokawa, Junji Itoh, Nobuya Int J Mol Sci Article We found two NADH-dependent reductases (QNR and bacC) in Microbacterium luteolum JCM 9174 (M. luteolum JCM 9174) that can reduce 3-quinuclidinone to optically pure (R)-(−)-3-quinuclidinol. Alcohol dehydrogenase from Leifsonia sp. (LSADH) was combined with these reductases to regenerate NAD(+) to NADH in situ in the presence of 2-propanol as a hydrogen donor. The reductase and LSADH genes were efficiently expressed in E. coli cells. A number of constructed E. coli biocatalysts (intact or immobilized) were applied to the resting cell reaction and optimized. Under the optimized conditions, (R)-(−)-3-quinuclidinol was synthesized from 3-quinuclidinone (15% w/v, 939 mM) giving a conversion yield of 100% for immobilized QNR. The optical purity of the (R)-(−)-3-quinuclidinol produced by the enzymatic reactions was >99.9%. Thus, E. coli biocatalysis should be useful for the practical production of the pharmaceutically important intermediate, (R)-(−)-3-quinuclidinol. Molecular Diversity Preservation International (MDPI) 2012-10-19 /pmc/articles/PMC3497340/ /pubmed/23202966 http://dx.doi.org/10.3390/ijms131013542 Text en © 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. http://creativecommons.org/licenses/by/3.0 This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0). |
spellingShingle | Article Isotani, Kentaro Kurokawa, Junji Itoh, Nobuya Production of (R)-3-Quinuclidinol by E. coli Biocatalysts Possessing NADH-Dependent 3-Quinuclidinone Reductase (QNR or bacC) from Microbacterium luteolum and Leifsonia Alcohol Dehydrogenase (LSADH) |
title | Production of (R)-3-Quinuclidinol by E. coli Biocatalysts Possessing NADH-Dependent 3-Quinuclidinone Reductase (QNR or bacC) from Microbacterium luteolum and Leifsonia Alcohol Dehydrogenase (LSADH) |
title_full | Production of (R)-3-Quinuclidinol by E. coli Biocatalysts Possessing NADH-Dependent 3-Quinuclidinone Reductase (QNR or bacC) from Microbacterium luteolum and Leifsonia Alcohol Dehydrogenase (LSADH) |
title_fullStr | Production of (R)-3-Quinuclidinol by E. coli Biocatalysts Possessing NADH-Dependent 3-Quinuclidinone Reductase (QNR or bacC) from Microbacterium luteolum and Leifsonia Alcohol Dehydrogenase (LSADH) |
title_full_unstemmed | Production of (R)-3-Quinuclidinol by E. coli Biocatalysts Possessing NADH-Dependent 3-Quinuclidinone Reductase (QNR or bacC) from Microbacterium luteolum and Leifsonia Alcohol Dehydrogenase (LSADH) |
title_short | Production of (R)-3-Quinuclidinol by E. coli Biocatalysts Possessing NADH-Dependent 3-Quinuclidinone Reductase (QNR or bacC) from Microbacterium luteolum and Leifsonia Alcohol Dehydrogenase (LSADH) |
title_sort | production of (r)-3-quinuclidinol by e. coli biocatalysts possessing nadh-dependent 3-quinuclidinone reductase (qnr or bacc) from microbacterium luteolum and leifsonia alcohol dehydrogenase (lsadh) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3497340/ https://www.ncbi.nlm.nih.gov/pubmed/23202966 http://dx.doi.org/10.3390/ijms131013542 |
work_keys_str_mv | AT isotanikentaro productionofr3quinuclidinolbyecolibiocatalystspossessingnadhdependent3quinuclidinonereductaseqnrorbaccfrommicrobacteriumluteolumandleifsoniaalcoholdehydrogenaselsadh AT kurokawajunji productionofr3quinuclidinolbyecolibiocatalystspossessingnadhdependent3quinuclidinonereductaseqnrorbaccfrommicrobacteriumluteolumandleifsoniaalcoholdehydrogenaselsadh AT itohnobuya productionofr3quinuclidinolbyecolibiocatalystspossessingnadhdependent3quinuclidinonereductaseqnrorbaccfrommicrobacteriumluteolumandleifsoniaalcoholdehydrogenaselsadh |