Cargando…
Multiple Novel Alternative Splicing Forms of FBXW7α Have a Translational Modulatory Function and Show Specific Alteration in Human Cancer
FBXW7 acts as a tumor suppressor through ubiquitination and degradation of multiple oncoproteins. Loss of FBXW7 expression, which could be partially attributed by the genomic deletion or mutation of FBXW7 locus, is frequently observed in various human cancers. However, the mechanisms regulating FBXW...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3498124/ https://www.ncbi.nlm.nih.gov/pubmed/23166673 http://dx.doi.org/10.1371/journal.pone.0049453 |
_version_ | 1782249786705969152 |
---|---|
author | Liu, Yueyong Ren, Shancheng Castellanos-Martin, Andres Perez-Losada, Jesus Kwon, Yong-Won Huang, Yurong Wang, Zeran Abad, Mar Cruz-Hernandez, Juan J. Rodriguez, Cesar A. Sun, Yinghao Mao, Jian-Hua |
author_facet | Liu, Yueyong Ren, Shancheng Castellanos-Martin, Andres Perez-Losada, Jesus Kwon, Yong-Won Huang, Yurong Wang, Zeran Abad, Mar Cruz-Hernandez, Juan J. Rodriguez, Cesar A. Sun, Yinghao Mao, Jian-Hua |
author_sort | Liu, Yueyong |
collection | PubMed |
description | FBXW7 acts as a tumor suppressor through ubiquitination and degradation of multiple oncoproteins. Loss of FBXW7 expression, which could be partially attributed by the genomic deletion or mutation of FBXW7 locus, is frequently observed in various human cancers. However, the mechanisms regulating FBXW7 expression still remain poorly understood. Here we examined the 5′ region of FBXW7 gene to investigate the regulation of FBXW7 expression. We identified seven alternative splicing (AS) 5′-UTR forms of FBXW7α that are composed of multiple novel non-coding exons. A significant difference in translational efficiency among these 5′-UTRs variants was observed by in vivo Luciferase reporter assay and Western blot. Furthermore, we found that the mRNA level of the AS form with high translational efficiency was specifically reduced in more than 80% of breast cancer cell lines and in more than 50% of human primary cancers from various tissues. In addition, we also identified mutations of FBXW7 in prostate cancers (5.6%), kidney cancers (16.7%), and bladder cancers (18.8%). Our results suggest that in addition to mutation, differential expression of FBXW7α AS forms with different translational properties may serve as a novel mechanism for inactivation of FBXW7 in human cancer. |
format | Online Article Text |
id | pubmed-3498124 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-34981242012-11-19 Multiple Novel Alternative Splicing Forms of FBXW7α Have a Translational Modulatory Function and Show Specific Alteration in Human Cancer Liu, Yueyong Ren, Shancheng Castellanos-Martin, Andres Perez-Losada, Jesus Kwon, Yong-Won Huang, Yurong Wang, Zeran Abad, Mar Cruz-Hernandez, Juan J. Rodriguez, Cesar A. Sun, Yinghao Mao, Jian-Hua PLoS One Research Article FBXW7 acts as a tumor suppressor through ubiquitination and degradation of multiple oncoproteins. Loss of FBXW7 expression, which could be partially attributed by the genomic deletion or mutation of FBXW7 locus, is frequently observed in various human cancers. However, the mechanisms regulating FBXW7 expression still remain poorly understood. Here we examined the 5′ region of FBXW7 gene to investigate the regulation of FBXW7 expression. We identified seven alternative splicing (AS) 5′-UTR forms of FBXW7α that are composed of multiple novel non-coding exons. A significant difference in translational efficiency among these 5′-UTRs variants was observed by in vivo Luciferase reporter assay and Western blot. Furthermore, we found that the mRNA level of the AS form with high translational efficiency was specifically reduced in more than 80% of breast cancer cell lines and in more than 50% of human primary cancers from various tissues. In addition, we also identified mutations of FBXW7 in prostate cancers (5.6%), kidney cancers (16.7%), and bladder cancers (18.8%). Our results suggest that in addition to mutation, differential expression of FBXW7α AS forms with different translational properties may serve as a novel mechanism for inactivation of FBXW7 in human cancer. Public Library of Science 2012-11-14 /pmc/articles/PMC3498124/ /pubmed/23166673 http://dx.doi.org/10.1371/journal.pone.0049453 Text en © 2012 Liu et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Liu, Yueyong Ren, Shancheng Castellanos-Martin, Andres Perez-Losada, Jesus Kwon, Yong-Won Huang, Yurong Wang, Zeran Abad, Mar Cruz-Hernandez, Juan J. Rodriguez, Cesar A. Sun, Yinghao Mao, Jian-Hua Multiple Novel Alternative Splicing Forms of FBXW7α Have a Translational Modulatory Function and Show Specific Alteration in Human Cancer |
title | Multiple Novel Alternative Splicing Forms of FBXW7α Have a Translational Modulatory Function and Show Specific Alteration in Human Cancer |
title_full | Multiple Novel Alternative Splicing Forms of FBXW7α Have a Translational Modulatory Function and Show Specific Alteration in Human Cancer |
title_fullStr | Multiple Novel Alternative Splicing Forms of FBXW7α Have a Translational Modulatory Function and Show Specific Alteration in Human Cancer |
title_full_unstemmed | Multiple Novel Alternative Splicing Forms of FBXW7α Have a Translational Modulatory Function and Show Specific Alteration in Human Cancer |
title_short | Multiple Novel Alternative Splicing Forms of FBXW7α Have a Translational Modulatory Function and Show Specific Alteration in Human Cancer |
title_sort | multiple novel alternative splicing forms of fbxw7α have a translational modulatory function and show specific alteration in human cancer |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3498124/ https://www.ncbi.nlm.nih.gov/pubmed/23166673 http://dx.doi.org/10.1371/journal.pone.0049453 |
work_keys_str_mv | AT liuyueyong multiplenovelalternativesplicingformsoffbxw7ahaveatranslationalmodulatoryfunctionandshowspecificalterationinhumancancer AT renshancheng multiplenovelalternativesplicingformsoffbxw7ahaveatranslationalmodulatoryfunctionandshowspecificalterationinhumancancer AT castellanosmartinandres multiplenovelalternativesplicingformsoffbxw7ahaveatranslationalmodulatoryfunctionandshowspecificalterationinhumancancer AT perezlosadajesus multiplenovelalternativesplicingformsoffbxw7ahaveatranslationalmodulatoryfunctionandshowspecificalterationinhumancancer AT kwonyongwon multiplenovelalternativesplicingformsoffbxw7ahaveatranslationalmodulatoryfunctionandshowspecificalterationinhumancancer AT huangyurong multiplenovelalternativesplicingformsoffbxw7ahaveatranslationalmodulatoryfunctionandshowspecificalterationinhumancancer AT wangzeran multiplenovelalternativesplicingformsoffbxw7ahaveatranslationalmodulatoryfunctionandshowspecificalterationinhumancancer AT abadmar multiplenovelalternativesplicingformsoffbxw7ahaveatranslationalmodulatoryfunctionandshowspecificalterationinhumancancer AT cruzhernandezjuanj multiplenovelalternativesplicingformsoffbxw7ahaveatranslationalmodulatoryfunctionandshowspecificalterationinhumancancer AT rodriguezcesara multiplenovelalternativesplicingformsoffbxw7ahaveatranslationalmodulatoryfunctionandshowspecificalterationinhumancancer AT sunyinghao multiplenovelalternativesplicingformsoffbxw7ahaveatranslationalmodulatoryfunctionandshowspecificalterationinhumancancer AT maojianhua multiplenovelalternativesplicingformsoffbxw7ahaveatranslationalmodulatoryfunctionandshowspecificalterationinhumancancer |