Cargando…

A Unified Method for Detecting Secondary Trait Associations with Rare Variants: Application to Sequence Data

Next-generation sequencing has made possible the detection of rare variant (RV) associations with quantitative traits (QT). Due to high sequencing cost, many studies can only sequence a modest number of selected samples with extreme QT. Therefore association testing in individual studies can be unde...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Dajiang J., Leal, Suzanne M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3499373/
https://www.ncbi.nlm.nih.gov/pubmed/23166519
http://dx.doi.org/10.1371/journal.pgen.1003075
Descripción
Sumario:Next-generation sequencing has made possible the detection of rare variant (RV) associations with quantitative traits (QT). Due to high sequencing cost, many studies can only sequence a modest number of selected samples with extreme QT. Therefore association testing in individual studies can be underpowered. Besides the primary trait, many clinically important secondary traits are often measured. It is highly beneficial if multiple studies can be jointly analyzed for detecting associations with commonly measured traits. However, analyzing secondary traits in selected samples can be biased if sample ascertainment is not properly modeled. Some methods exist for analyzing secondary traits in selected samples, where some burden tests can be implemented. However p-values can only be evaluated analytically via asymptotic approximations, which may not be accurate. Additionally, potentially more powerful sequence kernel association tests, variable selection-based methods, and burden tests that require permutations cannot be incorporated. To overcome these limitations, we developed a unified method for analyzing secondary trait associations with RVs (STAR) in selected samples, incorporating all RV tests. Statistical significance can be evaluated either through permutations or analytically. STAR makes it possible to apply more powerful RV tests to analyze secondary trait associations. It also enables jointly analyzing multiple cohorts ascertained under different study designs, which greatly boosts power. The performance of STAR and commonly used RV association tests were comprehensively evaluated using simulation studies. STAR was also implemented to analyze a dataset from the SardiNIA project where samples with extreme low-density lipoprotein levels were sequenced. A significant association between LDLR and systolic blood pressure was identified, which is supported by pharmacogenetic studies. In summary, for sequencing studies, STAR is an important tool for detecting secondary-trait RV associations.