Cargando…
Mechanisms of the antinociceptive action of (−) Epicatechin obtained from the hydroalcoholic fraction of Combretum leprosum Mart & Eic in rodents
BACKGROUND: The mechanisms of the antinociceptive activity of (−) epicatechin (EPI), a compound isolated from the hydroalcoholic fraction of Combreum leprosum Mart & Eicher. METHODS: were assessed in the model of chemical nociception induced by glutamate (20 μmol/paw). To evaluate the mechanisms...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3500648/ https://www.ncbi.nlm.nih.gov/pubmed/22830928 http://dx.doi.org/10.1186/1423-0127-19-68 |
_version_ | 1782250121364242432 |
---|---|
author | Lopes, Luciano da Silva Marques, Rosemarie Brandin Fernandes, Heliana Barros Pereira, Sergio da Silva Ayres, Mariane CC Chaves, Mariana Helena Almeida, Fernanda RC |
author_facet | Lopes, Luciano da Silva Marques, Rosemarie Brandin Fernandes, Heliana Barros Pereira, Sergio da Silva Ayres, Mariane CC Chaves, Mariana Helena Almeida, Fernanda RC |
author_sort | Lopes, Luciano da Silva |
collection | PubMed |
description | BACKGROUND: The mechanisms of the antinociceptive activity of (−) epicatechin (EPI), a compound isolated from the hydroalcoholic fraction of Combreum leprosum Mart & Eicher. METHODS: were assessed in the model of chemical nociception induced by glutamate (20 μmol/paw). To evaluate the mechanisms involved, the animals , male Swiss mice (25-30 g), received EPI (50 mg/kg p.o.) after pretreatment with naloxone (2 mg/kg s.c. opioid antagonist), glibenclamide (2 mg/kg s.c. antagonist K + channels sensitive to ATP), ketanserin (0.3 mg/kg s.c. antagonist of receptor 5-HT(2A)), yoimbine (0.15 mg/kg s.c. α2 adrenergic receptor antagonist), pindolol (1 mg/kg s.c. 5-HT1(a)/1(b) receptor antagonist), atropine (0.1 mg/kg s.c. muscarinic antagonist) and caffeine (3 mg/kg s.c. adenosine receptor antagonist), ondansetron (0.5 mg/kg s.c. for 5-HT(3) receptor) and L-arginine (600 mg/kg i.p.). RESULTS: The antinociceptive effect of EPI was reversed by pretreatment with naloxone and glibenclamide, ketanserin, yoimbine, atropine and pindolol, which demonstrates the involvement of opioid receptors and potassium channels sensitive to ATP, the serotoninergic (receptor 5HT(1A) and 5HT(2A)), adrenergic (receptor alpha 2) and cholinergic (muscarinic receptor) systems in the activities that were observed. The effects of EPI, however, were not reversed by pretreatment with caffeine, L-arginine or ondansetron, which shows that there is no involvement of 5HT(3) receptors or the purinergic and nitrergic systems in the antinociceptive effect of EPI. In the Open Field and Rotarod test, EPI had no significant effect, which shows that there was no central nervous system depressant or muscle relaxant effect on the results. CONCLUSIONS: This study demonstrates that the antinociceptive activity of EPI in the glutamate model involves the participation of the opioid system, serotonin, adrenergic and cholinergic. |
format | Online Article Text |
id | pubmed-3500648 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-35006482012-11-19 Mechanisms of the antinociceptive action of (−) Epicatechin obtained from the hydroalcoholic fraction of Combretum leprosum Mart & Eic in rodents Lopes, Luciano da Silva Marques, Rosemarie Brandin Fernandes, Heliana Barros Pereira, Sergio da Silva Ayres, Mariane CC Chaves, Mariana Helena Almeida, Fernanda RC J Biomed Sci Research BACKGROUND: The mechanisms of the antinociceptive activity of (−) epicatechin (EPI), a compound isolated from the hydroalcoholic fraction of Combreum leprosum Mart & Eicher. METHODS: were assessed in the model of chemical nociception induced by glutamate (20 μmol/paw). To evaluate the mechanisms involved, the animals , male Swiss mice (25-30 g), received EPI (50 mg/kg p.o.) after pretreatment with naloxone (2 mg/kg s.c. opioid antagonist), glibenclamide (2 mg/kg s.c. antagonist K + channels sensitive to ATP), ketanserin (0.3 mg/kg s.c. antagonist of receptor 5-HT(2A)), yoimbine (0.15 mg/kg s.c. α2 adrenergic receptor antagonist), pindolol (1 mg/kg s.c. 5-HT1(a)/1(b) receptor antagonist), atropine (0.1 mg/kg s.c. muscarinic antagonist) and caffeine (3 mg/kg s.c. adenosine receptor antagonist), ondansetron (0.5 mg/kg s.c. for 5-HT(3) receptor) and L-arginine (600 mg/kg i.p.). RESULTS: The antinociceptive effect of EPI was reversed by pretreatment with naloxone and glibenclamide, ketanserin, yoimbine, atropine and pindolol, which demonstrates the involvement of opioid receptors and potassium channels sensitive to ATP, the serotoninergic (receptor 5HT(1A) and 5HT(2A)), adrenergic (receptor alpha 2) and cholinergic (muscarinic receptor) systems in the activities that were observed. The effects of EPI, however, were not reversed by pretreatment with caffeine, L-arginine or ondansetron, which shows that there is no involvement of 5HT(3) receptors or the purinergic and nitrergic systems in the antinociceptive effect of EPI. In the Open Field and Rotarod test, EPI had no significant effect, which shows that there was no central nervous system depressant or muscle relaxant effect on the results. CONCLUSIONS: This study demonstrates that the antinociceptive activity of EPI in the glutamate model involves the participation of the opioid system, serotonin, adrenergic and cholinergic. BioMed Central 2012-07-25 /pmc/articles/PMC3500648/ /pubmed/22830928 http://dx.doi.org/10.1186/1423-0127-19-68 Text en Copyright ©2012 Lopes et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Lopes, Luciano da Silva Marques, Rosemarie Brandin Fernandes, Heliana Barros Pereira, Sergio da Silva Ayres, Mariane CC Chaves, Mariana Helena Almeida, Fernanda RC Mechanisms of the antinociceptive action of (−) Epicatechin obtained from the hydroalcoholic fraction of Combretum leprosum Mart & Eic in rodents |
title | Mechanisms of the antinociceptive action of (−) Epicatechin obtained from the hydroalcoholic fraction of Combretum leprosum Mart & Eic in rodents |
title_full | Mechanisms of the antinociceptive action of (−) Epicatechin obtained from the hydroalcoholic fraction of Combretum leprosum Mart & Eic in rodents |
title_fullStr | Mechanisms of the antinociceptive action of (−) Epicatechin obtained from the hydroalcoholic fraction of Combretum leprosum Mart & Eic in rodents |
title_full_unstemmed | Mechanisms of the antinociceptive action of (−) Epicatechin obtained from the hydroalcoholic fraction of Combretum leprosum Mart & Eic in rodents |
title_short | Mechanisms of the antinociceptive action of (−) Epicatechin obtained from the hydroalcoholic fraction of Combretum leprosum Mart & Eic in rodents |
title_sort | mechanisms of the antinociceptive action of (−) epicatechin obtained from the hydroalcoholic fraction of combretum leprosum mart & eic in rodents |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3500648/ https://www.ncbi.nlm.nih.gov/pubmed/22830928 http://dx.doi.org/10.1186/1423-0127-19-68 |
work_keys_str_mv | AT lopeslucianodasilva mechanismsoftheantinociceptiveactionofepicatechinobtainedfromthehydroalcoholicfractionofcombretumleprosummarteicinrodents AT marquesrosemariebrandin mechanismsoftheantinociceptiveactionofepicatechinobtainedfromthehydroalcoholicfractionofcombretumleprosummarteicinrodents AT fernandeshelianabarros mechanismsoftheantinociceptiveactionofepicatechinobtainedfromthehydroalcoholicfractionofcombretumleprosummarteicinrodents AT pereirasergiodasilva mechanismsoftheantinociceptiveactionofepicatechinobtainedfromthehydroalcoholicfractionofcombretumleprosummarteicinrodents AT ayresmarianecc mechanismsoftheantinociceptiveactionofepicatechinobtainedfromthehydroalcoholicfractionofcombretumleprosummarteicinrodents AT chavesmarianahelena mechanismsoftheantinociceptiveactionofepicatechinobtainedfromthehydroalcoholicfractionofcombretumleprosummarteicinrodents AT almeidafernandarc mechanismsoftheantinociceptiveactionofepicatechinobtainedfromthehydroalcoholicfractionofcombretumleprosummarteicinrodents |