Cargando…

Molecular mechanism of the “feedback loop” model of carcinogenesis

It is commonly accepted that cancer is a genetic disease. The current prevailing theory of carcinogenesis is the somatic mutation theory of carcinogenesis and metastasis (SMT). This theory postulates that mutations in epithelial cells lead to uncontrolled proliferation of tumor cells in a cell-auton...

Descripción completa

Detalles Bibliográficos
Autores principales: Rückert, Felix, Sticht, Carsten, Niedergethmann, Marco
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Landes Bioscience 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3502218/
https://www.ncbi.nlm.nih.gov/pubmed/23739683
http://dx.doi.org/10.4161/cib.21177
Descripción
Sumario:It is commonly accepted that cancer is a genetic disease. The current prevailing theory of carcinogenesis is the somatic mutation theory of carcinogenesis and metastasis (SMT). This theory postulates that mutations in epithelial cells lead to uncontrolled proliferation of tumor cells in a cell-autonomous fashion. This cell-autonomy is increasingly criticized. Current data suggest that the tumor microenvironment is also strongly involved in carcinogenesis. Recently, we published a hypothesis that considers the important contribution of the tumor microenvironment in carcinogenesis and complements the classical clonal evolution model. Essentially, this “feedback loop model” (FBM) postulates that the physiological communication between cancer cells and stromal cells in inflammatory or proliferative conditions is altered by anomalous signal processing within the parenchymal cells. The inability of parenchymal cells to correctly finalize the intercellular communication might result in a perpetuation of the activated state of cells and the tumor micromilieu. The FBM is unique among the tissue-based models because in this model tumor and stromal cells interact together in a reciprocal manner to form the cancer phenotype. Contrary to the SMT, the FBM postulates that mutated genes act in a cell-heteronomous fashion, not in a cell-autonomously fashion.