Cargando…
Dose-dependent effects of small-molecule antagonists on the genomic landscape of androgen receptor binding
BACKGROUND: The androgen receptor plays a critical role throughout the progression of prostate cancer and is an important drug target for this disease. While chromatin immunoprecipitation coupled with massively parallel sequencing (ChIP-Seq) is becoming an essential tool for studying transcription a...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3507642/ https://www.ncbi.nlm.nih.gov/pubmed/22849360 http://dx.doi.org/10.1186/1471-2164-13-355 |
_version_ | 1782251099242102784 |
---|---|
author | Zhu, Zhou Shi, Manli Hu, Wenyue Estrella, Heather Engebretsen, Jon Nichols, Tim Briere, David Hosea, Natilie Los, Gerrit Rejto, Paul A Fanjul, Andrea |
author_facet | Zhu, Zhou Shi, Manli Hu, Wenyue Estrella, Heather Engebretsen, Jon Nichols, Tim Briere, David Hosea, Natilie Los, Gerrit Rejto, Paul A Fanjul, Andrea |
author_sort | Zhu, Zhou |
collection | PubMed |
description | BACKGROUND: The androgen receptor plays a critical role throughout the progression of prostate cancer and is an important drug target for this disease. While chromatin immunoprecipitation coupled with massively parallel sequencing (ChIP-Seq) is becoming an essential tool for studying transcription and chromatin modification factors, it has rarely been employed in the context of drug discovery. RESULTS: Here we report changes in the genome-wide AR binding landscape due to dose-dependent inhibition by drug-like small molecules using ChIP-Seq. Integration of sequence analysis, transcriptome profiling, cell viability assays and xenograft tumor growth inhibition studies enabled us to establish a direct cistrome-activity relationship for two novel potent AR antagonists. By selectively occupying the strongest binding sites, AR signaling remains active even when androgen levels are low, as is characteristic of first-line androgen ablation therapy. Coupled cistrome and transcriptome profiling upon small molecule antagonism led to the identification of a core set of AR direct effector genes that are most likely to mediate the activities of targeted agents: unbiased pathway mapping revealed that AR is a key modulator of steroid metabolism by forming a tightly controlled feedback loop with other nuclear receptor family members and this oncogenic effect can be relieved by antagonist treatment. Furthermore, we found that AR also has an extensive role in negative gene regulation, with estrogen (related) receptor likely mediating its function as a transcriptional repressor. CONCLUSIONS: Our study provides a global and dynamic view of AR’s regulatory program upon antagonism, which may serve as a molecular basis for deciphering and developing AR therapeutics. |
format | Online Article Text |
id | pubmed-3507642 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-35076422012-11-28 Dose-dependent effects of small-molecule antagonists on the genomic landscape of androgen receptor binding Zhu, Zhou Shi, Manli Hu, Wenyue Estrella, Heather Engebretsen, Jon Nichols, Tim Briere, David Hosea, Natilie Los, Gerrit Rejto, Paul A Fanjul, Andrea BMC Genomics Research Article BACKGROUND: The androgen receptor plays a critical role throughout the progression of prostate cancer and is an important drug target for this disease. While chromatin immunoprecipitation coupled with massively parallel sequencing (ChIP-Seq) is becoming an essential tool for studying transcription and chromatin modification factors, it has rarely been employed in the context of drug discovery. RESULTS: Here we report changes in the genome-wide AR binding landscape due to dose-dependent inhibition by drug-like small molecules using ChIP-Seq. Integration of sequence analysis, transcriptome profiling, cell viability assays and xenograft tumor growth inhibition studies enabled us to establish a direct cistrome-activity relationship for two novel potent AR antagonists. By selectively occupying the strongest binding sites, AR signaling remains active even when androgen levels are low, as is characteristic of first-line androgen ablation therapy. Coupled cistrome and transcriptome profiling upon small molecule antagonism led to the identification of a core set of AR direct effector genes that are most likely to mediate the activities of targeted agents: unbiased pathway mapping revealed that AR is a key modulator of steroid metabolism by forming a tightly controlled feedback loop with other nuclear receptor family members and this oncogenic effect can be relieved by antagonist treatment. Furthermore, we found that AR also has an extensive role in negative gene regulation, with estrogen (related) receptor likely mediating its function as a transcriptional repressor. CONCLUSIONS: Our study provides a global and dynamic view of AR’s regulatory program upon antagonism, which may serve as a molecular basis for deciphering and developing AR therapeutics. BioMed Central 2012-07-31 /pmc/articles/PMC3507642/ /pubmed/22849360 http://dx.doi.org/10.1186/1471-2164-13-355 Text en Copyright ©2012 Zhu et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Zhu, Zhou Shi, Manli Hu, Wenyue Estrella, Heather Engebretsen, Jon Nichols, Tim Briere, David Hosea, Natilie Los, Gerrit Rejto, Paul A Fanjul, Andrea Dose-dependent effects of small-molecule antagonists on the genomic landscape of androgen receptor binding |
title | Dose-dependent effects of small-molecule antagonists on the genomic landscape of androgen receptor binding |
title_full | Dose-dependent effects of small-molecule antagonists on the genomic landscape of androgen receptor binding |
title_fullStr | Dose-dependent effects of small-molecule antagonists on the genomic landscape of androgen receptor binding |
title_full_unstemmed | Dose-dependent effects of small-molecule antagonists on the genomic landscape of androgen receptor binding |
title_short | Dose-dependent effects of small-molecule antagonists on the genomic landscape of androgen receptor binding |
title_sort | dose-dependent effects of small-molecule antagonists on the genomic landscape of androgen receptor binding |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3507642/ https://www.ncbi.nlm.nih.gov/pubmed/22849360 http://dx.doi.org/10.1186/1471-2164-13-355 |
work_keys_str_mv | AT zhuzhou dosedependenteffectsofsmallmoleculeantagonistsonthegenomiclandscapeofandrogenreceptorbinding AT shimanli dosedependenteffectsofsmallmoleculeantagonistsonthegenomiclandscapeofandrogenreceptorbinding AT huwenyue dosedependenteffectsofsmallmoleculeantagonistsonthegenomiclandscapeofandrogenreceptorbinding AT estrellaheather dosedependenteffectsofsmallmoleculeantagonistsonthegenomiclandscapeofandrogenreceptorbinding AT engebretsenjon dosedependenteffectsofsmallmoleculeantagonistsonthegenomiclandscapeofandrogenreceptorbinding AT nicholstim dosedependenteffectsofsmallmoleculeantagonistsonthegenomiclandscapeofandrogenreceptorbinding AT brieredavid dosedependenteffectsofsmallmoleculeantagonistsonthegenomiclandscapeofandrogenreceptorbinding AT hoseanatilie dosedependenteffectsofsmallmoleculeantagonistsonthegenomiclandscapeofandrogenreceptorbinding AT losgerrit dosedependenteffectsofsmallmoleculeantagonistsonthegenomiclandscapeofandrogenreceptorbinding AT rejtopaula dosedependenteffectsofsmallmoleculeantagonistsonthegenomiclandscapeofandrogenreceptorbinding AT fanjulandrea dosedependenteffectsofsmallmoleculeantagonistsonthegenomiclandscapeofandrogenreceptorbinding |