Cargando…

Hepatocyte Growth Factor Increases Vascular Endothelial Growth Factor-A Production in Human Synovial Fibroblasts through c-Met Receptor Pathway

BACKGROUND: Angiogenesis is essential for the progression of osteoarthritis (OA). Hepatocyte growth factor (HGF) is an angiogenic mediator, and it shows elevated levels in regions of OA. However, the relationship between HGF and vascular endothelial growth factor (VEGF-A) in OA synovial fibroblasts...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Yu-Min, Huang, Yuan-Li, Fong, Yi-Chin, Tsai, Chun-Hao, Chou, Ming-Chih, Tang, Chih-Hsin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3508989/
https://www.ncbi.nlm.nih.gov/pubmed/23209838
http://dx.doi.org/10.1371/journal.pone.0050924
Descripción
Sumario:BACKGROUND: Angiogenesis is essential for the progression of osteoarthritis (OA). Hepatocyte growth factor (HGF) is an angiogenic mediator, and it shows elevated levels in regions of OA. However, the relationship between HGF and vascular endothelial growth factor (VEGF-A) in OA synovial fibroblasts (OASFs) is mostly unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we found that stimulation of OASFs with HGF induced concentration- and time-dependent increases in VEGF-A expression. Pretreatment with PI3K inhibitor (Ly294002), Akt inhibitor, or mTORC1 inhibitor (rapamycin) blocked the HGF-induced VEGF-A production. Treatment of cells with HGF also increased PI3K, Akt, and mTORC1 phosphorylation. Furthermore, HGF increased the stability and activity of HIF-1 protein. Moreover, the use of pharmacological inhibitors or genetic inhibition revealed that c-Met, PI3K, Akt, and mTORC1 signaling pathways were potentially required for HGF-induced HIF-1α activation. CONCLUSIONS/SIGNIFICANCE: Taken together, our results provide evidence that HGF enhances VEGF-A expression in OASFs by an HIF-1α-dependent mechanism involving the activation of c-Met/PI3K/Akt and mTORC1 pathways.