Cargando…

Network rewiring is an important mechanism of gene essentiality change

Gene essentiality changes are crucial for organismal evolution. However, it is unclear how essentiality of orthologs varies across species. We investigated the underlying mechanism of gene essentiality changes between yeast and mouse based on the framework of network evolution and comparative genomi...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Jinho, Kim, Inhae, Han, Seong Kyu, Bowie, James U., Kim, Sanguk
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3509348/
https://www.ncbi.nlm.nih.gov/pubmed/23198090
http://dx.doi.org/10.1038/srep00900
Descripción
Sumario:Gene essentiality changes are crucial for organismal evolution. However, it is unclear how essentiality of orthologs varies across species. We investigated the underlying mechanism of gene essentiality changes between yeast and mouse based on the framework of network evolution and comparative genomic analysis. We found that yeast nonessential genes become essential in mouse when their network connections rapidly increase through engagement in protein complexes. The increased interactions allowed the previously nonessential genes to become members of vital pathways. By accounting for changes in gene essentiality, we firmly reestablished the centrality-lethality rule, which proposed the relationship of essential genes and network hubs. Furthermore, we discovered that the number of connections associated with essential and non-essential genes depends on whether they were essential in ancestral species. Our study describes for the first time how network evolution occurs to change gene essentiality.