Cargando…

Selective Pressure Causes an RNA Virus to Trade Reproductive Fitness for Increased Structural and Thermal Stability of a Viral Enzyme

The modulation of fitness by single mutational substitutions during environmental change is the most fundamental consequence of natural selection. The antagonistic tradeoffs of pleiotropic mutations that can be selected under changing environments therefore lie at the foundation of evolutionary biol...

Descripción completa

Detalles Bibliográficos
Autores principales: Dessau, Moshe, Goldhill, Daniel, McBride, Robert L., Turner, Paul E., Modis, Yorgo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3510033/
https://www.ncbi.nlm.nih.gov/pubmed/23209446
http://dx.doi.org/10.1371/journal.pgen.1003102
_version_ 1782251404825460736
author Dessau, Moshe
Goldhill, Daniel
McBride, Robert L.
Turner, Paul E.
Modis, Yorgo
author_facet Dessau, Moshe
Goldhill, Daniel
McBride, Robert L.
Turner, Paul E.
Modis, Yorgo
author_sort Dessau, Moshe
collection PubMed
description The modulation of fitness by single mutational substitutions during environmental change is the most fundamental consequence of natural selection. The antagonistic tradeoffs of pleiotropic mutations that can be selected under changing environments therefore lie at the foundation of evolutionary biology. However, the molecular basis of fitness tradeoffs is rarely determined in terms of how these pleiotropic mutations affect protein structure. Here we use an interdisciplinary approach to study how antagonistic pleiotropy and protein function dictate a fitness tradeoff. We challenged populations of an RNA virus, bacteriophage Φ6, to evolve in a novel temperature environment where heat shock imposed extreme virus mortality. A single amino acid substitution in the viral lysin protein P5 (V207F) favored improved stability, and hence survival of challenged viruses, despite a concomitant tradeoff that decreased viral reproduction. This mutation increased the thermostability of P5. Crystal structures of wild-type, mutant, and ligand-bound P5 reveal the molecular basis of this thermostabilization—the Phe207 side chain fills a hydrophobic cavity that is unoccupied in the wild-type—and identify P5 as a lytic transglycosylase. The mutation did not reduce the enzymatic activity of P5, suggesting that the reproduction tradeoff stems from other factors such as inefficient capsid assembly or disassembly. Our study demonstrates how combining experimental evolution, biochemistry, and structural biology can identify the mechanisms that drive the antagonistic pleiotropic phenotypes of an individual point mutation in the classic evolutionary tug-of-war between survival and reproduction.
format Online
Article
Text
id pubmed-3510033
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-35100332012-12-03 Selective Pressure Causes an RNA Virus to Trade Reproductive Fitness for Increased Structural and Thermal Stability of a Viral Enzyme Dessau, Moshe Goldhill, Daniel McBride, Robert L. Turner, Paul E. Modis, Yorgo PLoS Genet Research Article The modulation of fitness by single mutational substitutions during environmental change is the most fundamental consequence of natural selection. The antagonistic tradeoffs of pleiotropic mutations that can be selected under changing environments therefore lie at the foundation of evolutionary biology. However, the molecular basis of fitness tradeoffs is rarely determined in terms of how these pleiotropic mutations affect protein structure. Here we use an interdisciplinary approach to study how antagonistic pleiotropy and protein function dictate a fitness tradeoff. We challenged populations of an RNA virus, bacteriophage Φ6, to evolve in a novel temperature environment where heat shock imposed extreme virus mortality. A single amino acid substitution in the viral lysin protein P5 (V207F) favored improved stability, and hence survival of challenged viruses, despite a concomitant tradeoff that decreased viral reproduction. This mutation increased the thermostability of P5. Crystal structures of wild-type, mutant, and ligand-bound P5 reveal the molecular basis of this thermostabilization—the Phe207 side chain fills a hydrophobic cavity that is unoccupied in the wild-type—and identify P5 as a lytic transglycosylase. The mutation did not reduce the enzymatic activity of P5, suggesting that the reproduction tradeoff stems from other factors such as inefficient capsid assembly or disassembly. Our study demonstrates how combining experimental evolution, biochemistry, and structural biology can identify the mechanisms that drive the antagonistic pleiotropic phenotypes of an individual point mutation in the classic evolutionary tug-of-war between survival and reproduction. Public Library of Science 2012-11-29 /pmc/articles/PMC3510033/ /pubmed/23209446 http://dx.doi.org/10.1371/journal.pgen.1003102 Text en © 2012 Dessau et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Dessau, Moshe
Goldhill, Daniel
McBride, Robert L.
Turner, Paul E.
Modis, Yorgo
Selective Pressure Causes an RNA Virus to Trade Reproductive Fitness for Increased Structural and Thermal Stability of a Viral Enzyme
title Selective Pressure Causes an RNA Virus to Trade Reproductive Fitness for Increased Structural and Thermal Stability of a Viral Enzyme
title_full Selective Pressure Causes an RNA Virus to Trade Reproductive Fitness for Increased Structural and Thermal Stability of a Viral Enzyme
title_fullStr Selective Pressure Causes an RNA Virus to Trade Reproductive Fitness for Increased Structural and Thermal Stability of a Viral Enzyme
title_full_unstemmed Selective Pressure Causes an RNA Virus to Trade Reproductive Fitness for Increased Structural and Thermal Stability of a Viral Enzyme
title_short Selective Pressure Causes an RNA Virus to Trade Reproductive Fitness for Increased Structural and Thermal Stability of a Viral Enzyme
title_sort selective pressure causes an rna virus to trade reproductive fitness for increased structural and thermal stability of a viral enzyme
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3510033/
https://www.ncbi.nlm.nih.gov/pubmed/23209446
http://dx.doi.org/10.1371/journal.pgen.1003102
work_keys_str_mv AT dessaumoshe selectivepressurecausesanrnavirustotradereproductivefitnessforincreasedstructuralandthermalstabilityofaviralenzyme
AT goldhilldaniel selectivepressurecausesanrnavirustotradereproductivefitnessforincreasedstructuralandthermalstabilityofaviralenzyme
AT mcbriderobertl selectivepressurecausesanrnavirustotradereproductivefitnessforincreasedstructuralandthermalstabilityofaviralenzyme
AT turnerpaule selectivepressurecausesanrnavirustotradereproductivefitnessforincreasedstructuralandthermalstabilityofaviralenzyme
AT modisyorgo selectivepressurecausesanrnavirustotradereproductivefitnessforincreasedstructuralandthermalstabilityofaviralenzyme