Cargando…
Genome-wide meta-analysis points to CTC1 and ZNF676 as genes regulating telomere homeostasis in humans
Leukocyte telomere length (LTL) is associated with a number of common age-related diseases and is a heritable trait. Previous genome-wide association studies (GWASs) identified two loci on chromosomes 3q26.2 (TERC) and 10q24.33 (OBFC1) that are associated with the inter-individual LTL variation. We...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3510758/ https://www.ncbi.nlm.nih.gov/pubmed/23001564 http://dx.doi.org/10.1093/hmg/dds382 |
_version_ | 1782251496195227648 |
---|---|
author | Mangino, Massimo Hwang, Shih-Jen Spector, Timothy D. Hunt, Steven C. Kimura, Masayuki Fitzpatrick, Annette L. Christiansen, Lene Petersen, Inge Elbers, Clara C. Harris, Tamara Chen, Wei Srinivasan, Sathanur R. Kark, Jeremy D. Benetos, Athanase El Shamieh, Said Visvikis-Siest, Sophie Christensen, Kaare Berenson, Gerald S. Valdes, Ana M. Viñuela, Ana Garcia, Melissa Arnett, Donna K. Broeckel, Ulrich Province, Michael A. Pankow, James S. Kammerer, Candace Liu, Yongmei Nalls, Michael Tishkoff, Sarah Thomas, Fridtjof Ziv, Elad Psaty, Bruce M. Bis, Joshua C. Rotter, Jerome I. Taylor, Kent D. Smith, Erin Schork, Nicholas J. Levy, Daniel Aviv, Abraham |
author_facet | Mangino, Massimo Hwang, Shih-Jen Spector, Timothy D. Hunt, Steven C. Kimura, Masayuki Fitzpatrick, Annette L. Christiansen, Lene Petersen, Inge Elbers, Clara C. Harris, Tamara Chen, Wei Srinivasan, Sathanur R. Kark, Jeremy D. Benetos, Athanase El Shamieh, Said Visvikis-Siest, Sophie Christensen, Kaare Berenson, Gerald S. Valdes, Ana M. Viñuela, Ana Garcia, Melissa Arnett, Donna K. Broeckel, Ulrich Province, Michael A. Pankow, James S. Kammerer, Candace Liu, Yongmei Nalls, Michael Tishkoff, Sarah Thomas, Fridtjof Ziv, Elad Psaty, Bruce M. Bis, Joshua C. Rotter, Jerome I. Taylor, Kent D. Smith, Erin Schork, Nicholas J. Levy, Daniel Aviv, Abraham |
author_sort | Mangino, Massimo |
collection | PubMed |
description | Leukocyte telomere length (LTL) is associated with a number of common age-related diseases and is a heritable trait. Previous genome-wide association studies (GWASs) identified two loci on chromosomes 3q26.2 (TERC) and 10q24.33 (OBFC1) that are associated with the inter-individual LTL variation. We performed a meta-analysis of 9190 individuals from six independent GWAS and validated our findings in 2226 individuals from four additional studies. We confirmed previously reported associations with OBFC1 (rs9419958 P = 9.1 × 10(−11)) and with the telomerase RNA component TERC (rs1317082, P = 1.1 × 10(−8)). We also identified two novel genomic regions associated with LTL variation that map near a conserved telomere maintenance complex component 1 (CTC1; rs3027234, P = 3.6 × 10(−8)) on chromosome17p13.1 and zinc finger protein 676 (ZNF676; rs412658, P = 3.3 × 10(−8)) on 19p12. The minor allele of rs3027234 was associated with both shorter LTL and lower expression of CTC1. Our findings are consistent with the recent observations that point mutations in CTC1 cause short telomeres in both Arabidopsis and humans affected by a rare Mendelian syndrome. Overall, our results provide novel insights into the genetic architecture of inter-individual LTL variation in the general population. |
format | Online Article Text |
id | pubmed-3510758 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-35107582012-11-30 Genome-wide meta-analysis points to CTC1 and ZNF676 as genes regulating telomere homeostasis in humans Mangino, Massimo Hwang, Shih-Jen Spector, Timothy D. Hunt, Steven C. Kimura, Masayuki Fitzpatrick, Annette L. Christiansen, Lene Petersen, Inge Elbers, Clara C. Harris, Tamara Chen, Wei Srinivasan, Sathanur R. Kark, Jeremy D. Benetos, Athanase El Shamieh, Said Visvikis-Siest, Sophie Christensen, Kaare Berenson, Gerald S. Valdes, Ana M. Viñuela, Ana Garcia, Melissa Arnett, Donna K. Broeckel, Ulrich Province, Michael A. Pankow, James S. Kammerer, Candace Liu, Yongmei Nalls, Michael Tishkoff, Sarah Thomas, Fridtjof Ziv, Elad Psaty, Bruce M. Bis, Joshua C. Rotter, Jerome I. Taylor, Kent D. Smith, Erin Schork, Nicholas J. Levy, Daniel Aviv, Abraham Hum Mol Genet Association Studies Articles Leukocyte telomere length (LTL) is associated with a number of common age-related diseases and is a heritable trait. Previous genome-wide association studies (GWASs) identified two loci on chromosomes 3q26.2 (TERC) and 10q24.33 (OBFC1) that are associated with the inter-individual LTL variation. We performed a meta-analysis of 9190 individuals from six independent GWAS and validated our findings in 2226 individuals from four additional studies. We confirmed previously reported associations with OBFC1 (rs9419958 P = 9.1 × 10(−11)) and with the telomerase RNA component TERC (rs1317082, P = 1.1 × 10(−8)). We also identified two novel genomic regions associated with LTL variation that map near a conserved telomere maintenance complex component 1 (CTC1; rs3027234, P = 3.6 × 10(−8)) on chromosome17p13.1 and zinc finger protein 676 (ZNF676; rs412658, P = 3.3 × 10(−8)) on 19p12. The minor allele of rs3027234 was associated with both shorter LTL and lower expression of CTC1. Our findings are consistent with the recent observations that point mutations in CTC1 cause short telomeres in both Arabidopsis and humans affected by a rare Mendelian syndrome. Overall, our results provide novel insights into the genetic architecture of inter-individual LTL variation in the general population. Oxford University Press 2012-12-15 2012-09-21 /pmc/articles/PMC3510758/ /pubmed/23001564 http://dx.doi.org/10.1093/hmg/dds382 Text en © The Author 2012. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Association Studies Articles Mangino, Massimo Hwang, Shih-Jen Spector, Timothy D. Hunt, Steven C. Kimura, Masayuki Fitzpatrick, Annette L. Christiansen, Lene Petersen, Inge Elbers, Clara C. Harris, Tamara Chen, Wei Srinivasan, Sathanur R. Kark, Jeremy D. Benetos, Athanase El Shamieh, Said Visvikis-Siest, Sophie Christensen, Kaare Berenson, Gerald S. Valdes, Ana M. Viñuela, Ana Garcia, Melissa Arnett, Donna K. Broeckel, Ulrich Province, Michael A. Pankow, James S. Kammerer, Candace Liu, Yongmei Nalls, Michael Tishkoff, Sarah Thomas, Fridtjof Ziv, Elad Psaty, Bruce M. Bis, Joshua C. Rotter, Jerome I. Taylor, Kent D. Smith, Erin Schork, Nicholas J. Levy, Daniel Aviv, Abraham Genome-wide meta-analysis points to CTC1 and ZNF676 as genes regulating telomere homeostasis in humans |
title | Genome-wide meta-analysis points to CTC1 and ZNF676 as genes regulating telomere homeostasis in humans |
title_full | Genome-wide meta-analysis points to CTC1 and ZNF676 as genes regulating telomere homeostasis in humans |
title_fullStr | Genome-wide meta-analysis points to CTC1 and ZNF676 as genes regulating telomere homeostasis in humans |
title_full_unstemmed | Genome-wide meta-analysis points to CTC1 and ZNF676 as genes regulating telomere homeostasis in humans |
title_short | Genome-wide meta-analysis points to CTC1 and ZNF676 as genes regulating telomere homeostasis in humans |
title_sort | genome-wide meta-analysis points to ctc1 and znf676 as genes regulating telomere homeostasis in humans |
topic | Association Studies Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3510758/ https://www.ncbi.nlm.nih.gov/pubmed/23001564 http://dx.doi.org/10.1093/hmg/dds382 |
work_keys_str_mv | AT manginomassimo genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans AT hwangshihjen genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans AT spectortimothyd genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans AT huntstevenc genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans AT kimuramasayuki genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans AT fitzpatrickannettel genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans AT christiansenlene genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans AT peterseninge genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans AT elbersclarac genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans AT harristamara genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans AT chenwei genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans AT srinivasansathanurr genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans AT karkjeremyd genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans AT benetosathanase genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans AT elshamiehsaid genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans AT visvikissiestsophie genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans AT christensenkaare genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans AT berensongeralds genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans AT valdesanam genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans AT vinuelaana genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans AT garciamelissa genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans AT arnettdonnak genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans AT broeckelulrich genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans AT provincemichaela genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans AT pankowjamess genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans AT kammerercandace genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans AT liuyongmei genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans AT nallsmichael genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans AT tishkoffsarah genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans AT thomasfridtjof genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans AT zivelad genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans AT psatybrucem genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans AT bisjoshuac genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans AT rotterjeromei genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans AT taylorkentd genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans AT smitherin genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans AT schorknicholasj genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans AT levydaniel genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans AT avivabraham genomewidemetaanalysispointstoctc1andznf676asgenesregulatingtelomerehomeostasisinhumans |