Cargando…

Contribution of Amino Acid Catabolism to the Tissue Specific Persistence of Campylobacter jejuni in a Murine Colonization Model

Campylobacter jejuni is a major cause of food-borne disease in industrialized countries. Carbohydrate utilization by C. jejuni is severely restricted, and knowledge about which substrates fuel C. jejuni infection and growth is limited. Some amino acids have been shown to serve as carbon sources both...

Descripción completa

Detalles Bibliográficos
Autores principales: Hofreuter, Dirk, Mohr, Juliane, Wensel, Olga, Rademacher, Sebastian, Schreiber, Kerstin, Schomburg, Dietmar, Gao, Beile, Galán, Jorge E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3511319/
https://www.ncbi.nlm.nih.gov/pubmed/23226358
http://dx.doi.org/10.1371/journal.pone.0050699
Descripción
Sumario:Campylobacter jejuni is a major cause of food-borne disease in industrialized countries. Carbohydrate utilization by C. jejuni is severely restricted, and knowledge about which substrates fuel C. jejuni infection and growth is limited. Some amino acids have been shown to serve as carbon sources both in vitro and in vivo. In the present study we investigated the contribution of serine and proline catabolism to the in vitro and in vivo growth of C. jejuni 81-176. We confirmed that the serine transporter SdaC and the serine ammonia-lyase SdaA are required for serine utilization, and demonstrated that a predicted proline permease PutP and a bifunctional proline/delta-1-pyrroline-5-carboxylate dehydrogenase PutA are required for proline utilization by C. jejuni 81-176. C. jejuni 81-176 mutants unable to utilize serine were shown to be severely defective for colonization of the intestine and systemic tissues in a mouse model of infection. In contrast, C. jejuni 81-176 mutants unable to utilize proline were only defective for intestinal colonization. These results further emphasize the importance of amino acid utilization in C. jejuni colonization of various tissues.