Cargando…
Metabolic Alterations and Increased Liver mTOR Expression Precede the Development of Autoimmune Disease in a Murine Model of Lupus Erythematosus
Although metabolic syndrome (MS) and systemic lupus erythematosus (SLE) are often associated, a common link has not been identified. Using the BWF1 mouse, which develops MS and SLE, we sought a molecular connection to explain the prevalence of these two diseases in the same individuals. We determine...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3514194/ https://www.ncbi.nlm.nih.gov/pubmed/23226562 http://dx.doi.org/10.1371/journal.pone.0051118 |
Sumario: | Although metabolic syndrome (MS) and systemic lupus erythematosus (SLE) are often associated, a common link has not been identified. Using the BWF1 mouse, which develops MS and SLE, we sought a molecular connection to explain the prevalence of these two diseases in the same individuals. We determined SLE- markers (plasma anti-ds-DNA antibodies, splenic regulatory T cells (Tregs) and cytokines, proteinuria and renal histology) and MS-markers (plasma glucose, non-esterified fatty acids, triglycerides, insulin and leptin, liver triglycerides, visceral adipose tissue, liver and adipose tissue expression of 86 insulin signaling-related genes) in 8-, 16-, 24-, and 36-week old BWF1 and control New-Zealand-White female mice. Up to week 16, BWF1 mice showed MS-markers (hyperleptinemia, hyperinsulinemia, fatty liver and visceral adipose tissue) that disappeared at week 36, when plasma anti-dsDNA antibodies, lupus nephritis and a pro-autoimmune cytokine profile were detected. BWF1 mice had hyperleptinemia and high splenic Tregs till week 16, thereby pointing to leptin resistance, as confirmed by the lack of increased liver P-Tyr-STAT-3. Hyperinsulinemia was associated with a down-regulation of insulin related-genes only in adipose tissue, whereas expression of liver mammalian target of rapamicyn (mTOR) was increased. Although leptin resistance presented early in BWF1 mice can slow-down the progression of autoimmunity, our results suggest that sustained insulin stimulation of organs, such as liver and probably kidneys, facilitates the over-expression and activity of mTOR and the development of SLE. |
---|