Cargando…
Acetyl-L-Carnitine Improves Behavior and Dendritic Morphology in a Mouse Model of Rett Syndrome
Rett syndrome (RTT) is a devastating neurodevelopmental disorder affecting 1 in 10,000 girls. Approximately 90% of cases are caused by spontaneous mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2). Girls with RTT suffer from severe motor, respiratory, cognitive and social...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3515484/ https://www.ncbi.nlm.nih.gov/pubmed/23227269 http://dx.doi.org/10.1371/journal.pone.0051586 |
_version_ | 1782252190812864512 |
---|---|
author | Schaevitz, Laura R. Nicolai, Raffaella Lopez, Carla M. D'Iddio, Stefania Iannoni, Emerenziana Berger-Sweeney, Joanne E. |
author_facet | Schaevitz, Laura R. Nicolai, Raffaella Lopez, Carla M. D'Iddio, Stefania Iannoni, Emerenziana Berger-Sweeney, Joanne E. |
author_sort | Schaevitz, Laura R. |
collection | PubMed |
description | Rett syndrome (RTT) is a devastating neurodevelopmental disorder affecting 1 in 10,000 girls. Approximately 90% of cases are caused by spontaneous mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2). Girls with RTT suffer from severe motor, respiratory, cognitive and social abnomalities attributed to early deficits in synaptic connectivity which manifest in the adult as a myriad of physiological and anatomical abnormalities including, but not limited to, dimished dendritic complexity. Supplementation with acetyl-L-carnitine (ALC), an acetyl group donor, ameliorates motor and cognitive deficits in other disease models through a variety of mechanisms including altering patterns of histone acetylation resulting in changes in gene expression, and stimulating biosynthetic pathways such as acetylcholine. We hypothesized ALC treatment during critical periods in cortical development would promote normal synaptic maturation, and continuing treatment would improve behavioral deficits in the Mecp2(1lox) mouse model of RTT. In this study, wildtype and Mecp2(1lox) mutant mice received daily injections of ALC from birth until death (postnatal day 47). General health, motor, respiratory, and cognitive functions were assessed at several time points during symptom progression. ALC improved weight gain, grip strength, activity levels, prevented metabolic abnormalities and modestly improved cognitive function in Mecp2 null mice early in the course of treatment, but did not significantly improve motor or cognitive functions assessed later in life. ALC treatment from birth was associated with an almost complete rescue of hippocampal dendritic morphology abnormalities with no discernable side effects in the mutant mice. Therefore, ALC appears to be a promising therapeutic approach to treating early RTT symptoms and may be useful in combination with other therapies. |
format | Online Article Text |
id | pubmed-3515484 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-35154842012-12-07 Acetyl-L-Carnitine Improves Behavior and Dendritic Morphology in a Mouse Model of Rett Syndrome Schaevitz, Laura R. Nicolai, Raffaella Lopez, Carla M. D'Iddio, Stefania Iannoni, Emerenziana Berger-Sweeney, Joanne E. PLoS One Research Article Rett syndrome (RTT) is a devastating neurodevelopmental disorder affecting 1 in 10,000 girls. Approximately 90% of cases are caused by spontaneous mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2). Girls with RTT suffer from severe motor, respiratory, cognitive and social abnomalities attributed to early deficits in synaptic connectivity which manifest in the adult as a myriad of physiological and anatomical abnormalities including, but not limited to, dimished dendritic complexity. Supplementation with acetyl-L-carnitine (ALC), an acetyl group donor, ameliorates motor and cognitive deficits in other disease models through a variety of mechanisms including altering patterns of histone acetylation resulting in changes in gene expression, and stimulating biosynthetic pathways such as acetylcholine. We hypothesized ALC treatment during critical periods in cortical development would promote normal synaptic maturation, and continuing treatment would improve behavioral deficits in the Mecp2(1lox) mouse model of RTT. In this study, wildtype and Mecp2(1lox) mutant mice received daily injections of ALC from birth until death (postnatal day 47). General health, motor, respiratory, and cognitive functions were assessed at several time points during symptom progression. ALC improved weight gain, grip strength, activity levels, prevented metabolic abnormalities and modestly improved cognitive function in Mecp2 null mice early in the course of treatment, but did not significantly improve motor or cognitive functions assessed later in life. ALC treatment from birth was associated with an almost complete rescue of hippocampal dendritic morphology abnormalities with no discernable side effects in the mutant mice. Therefore, ALC appears to be a promising therapeutic approach to treating early RTT symptoms and may be useful in combination with other therapies. Public Library of Science 2012-12-05 /pmc/articles/PMC3515484/ /pubmed/23227269 http://dx.doi.org/10.1371/journal.pone.0051586 Text en © 2012 Schaevitz et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Schaevitz, Laura R. Nicolai, Raffaella Lopez, Carla M. D'Iddio, Stefania Iannoni, Emerenziana Berger-Sweeney, Joanne E. Acetyl-L-Carnitine Improves Behavior and Dendritic Morphology in a Mouse Model of Rett Syndrome |
title | Acetyl-L-Carnitine Improves Behavior and Dendritic Morphology in a Mouse Model of Rett Syndrome |
title_full | Acetyl-L-Carnitine Improves Behavior and Dendritic Morphology in a Mouse Model of Rett Syndrome |
title_fullStr | Acetyl-L-Carnitine Improves Behavior and Dendritic Morphology in a Mouse Model of Rett Syndrome |
title_full_unstemmed | Acetyl-L-Carnitine Improves Behavior and Dendritic Morphology in a Mouse Model of Rett Syndrome |
title_short | Acetyl-L-Carnitine Improves Behavior and Dendritic Morphology in a Mouse Model of Rett Syndrome |
title_sort | acetyl-l-carnitine improves behavior and dendritic morphology in a mouse model of rett syndrome |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3515484/ https://www.ncbi.nlm.nih.gov/pubmed/23227269 http://dx.doi.org/10.1371/journal.pone.0051586 |
work_keys_str_mv | AT schaevitzlaurar acetyllcarnitineimprovesbehavioranddendriticmorphologyinamousemodelofrettsyndrome AT nicolairaffaella acetyllcarnitineimprovesbehavioranddendriticmorphologyinamousemodelofrettsyndrome AT lopezcarlam acetyllcarnitineimprovesbehavioranddendriticmorphologyinamousemodelofrettsyndrome AT diddiostefania acetyllcarnitineimprovesbehavioranddendriticmorphologyinamousemodelofrettsyndrome AT iannoniemerenziana acetyllcarnitineimprovesbehavioranddendriticmorphologyinamousemodelofrettsyndrome AT bergersweeneyjoannee acetyllcarnitineimprovesbehavioranddendriticmorphologyinamousemodelofrettsyndrome |