Cargando…
A Common STEP in the Synaptic Pathology of Diverse Neuropsychiatric Disorders
Synaptic function is critical for proper cognition, and synaptopathologies have been implicated in diverse neuropsychiatric disorders. STriatal-Enriched protein tyrosine Phosphatase (STEP) is a brain-enriched tyrosine phosphatase that normally opposes synaptic strengthening by dephosphorylating key...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
YJBM
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3516890/ https://www.ncbi.nlm.nih.gov/pubmed/23239949 |
Sumario: | Synaptic function is critical for proper cognition, and synaptopathologies have been implicated in diverse neuropsychiatric disorders. STriatal-Enriched protein tyrosine Phosphatase (STEP) is a brain-enriched tyrosine phosphatase that normally opposes synaptic strengthening by dephosphorylating key neuronal signaling molecules. STEP targets include N-methyl D-aspartate receptors (NMDARs) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), as well as extracellular signal-regulated kinase (ERK) and the tyrosine kinase Fyn. STEP-mediated dephosphorylation promotes the internalization of NMDARs and AMPARs and the inactivation of ERK and Fyn. Regulation of STEP is complex, and recent work has implicated STEP dysregulation in the pathophysiology of several neuropsychiatric disorders. Both high levels and low levels of STEP are found in a diverse group of illnesses. This review focuses on the role of STEP in three disorders in which STEP levels are elevated: Alzheimer’s disease, fragile X syndrome, and schizophrenia. The presence of elevated STEP in all three of these disorders raises the intriguing possibility that cognitive deficits resulting from diverse etiologies may share a common molecular pathway. |
---|