Cargando…

Reducing the Time Requirement of k-Means Algorithm

Traditional k-means and most k-means variants are still computationally expensive for large datasets, such as microarray data, which have large datasets with large dimension size d. In k-means clustering, we are given a set of n data points in d-dimensional space R(d) and an integer k. The problem i...

Descripción completa

Detalles Bibliográficos
Autores principales: Osamor, Victor Chukwudi, Adebiyi, Ezekiel Femi, Oyelade, Jelilli Olarenwaju, Doumbia, Seydou
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3519838/
https://www.ncbi.nlm.nih.gov/pubmed/23239974
http://dx.doi.org/10.1371/journal.pone.0049946