Cargando…
Reducing the Time Requirement of k-Means Algorithm
Traditional k-means and most k-means variants are still computationally expensive for large datasets, such as microarray data, which have large datasets with large dimension size d. In k-means clustering, we are given a set of n data points in d-dimensional space R(d) and an integer k. The problem i...
Autores principales: | Osamor, Victor Chukwudi, Adebiyi, Ezekiel Femi, Oyelade, Jelilli Olarenwaju, Doumbia, Seydou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3519838/ https://www.ncbi.nlm.nih.gov/pubmed/23239974 http://dx.doi.org/10.1371/journal.pone.0049946 |
Ejemplares similares
-
Analyzing a single nucleotide polymorphism in schizophrenia: a meta-analysis approach
por: Falola, Oluwadamilare, et al.
Publicado: (2017) -
Sourcing brain histone modification data and development of algorithm for identification of hypersensitive sites
por: Osamor, Victor Chukwudi
Publicado: (2015) -
Enhancing the weighted voting ensemble algorithm for tuberculosis predictive diagnosis
por: Osamor, Victor Chukwudi, et al.
Publicado: (2021) -
Computational Identification of Metabolic Pathways of Plasmodium falciparum using the k-Shortest Path Algorithm
por: Oyelade, Jelili, et al.
Publicado: (2019) -
Cluster analysis of
Plasmodium RNA-seq time-course data identifies stage-specific co-regulated biological processes and regulatory elements
por: Ashano, Efejiro, et al.
Publicado: (2016)