Cargando…
A semi-supervised boosting SVM for predicting hot spots at protein-protein Interfaces
BACKGROUND: Hot spots are residues contributing the most of binding free energy yet accounting for a small portion of a protein interface. Experimental approaches to identify hot spots such as alanine scanning mutagenesis are expensive and time-consuming, while computational methods are emerging as...
Autores principales: | Xu, Bin, Wei, Xiaoming, Deng, Lei, Guan, Jihong, Zhou, Shuigeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3521187/ https://www.ncbi.nlm.nih.gov/pubmed/23282146 http://dx.doi.org/10.1186/1752-0509-6-S2-S6 |
Ejemplares similares
-
Computationally identifying hot spots in protein-DNA binding interfaces using an ensemble approach
por: Pan, Yuliang, et al.
Publicado: (2020) -
Exploiting topic modeling to boost metagenomic reads binning
por: Zhang, Ruichang, et al.
Publicado: (2015) -
Enhanced Prediction of Hot Spots at Protein-Protein Interfaces Using Extreme Gradient Boosting
por: Wang, Hao, et al.
Publicado: (2018) -
Protein complex detection with semi-supervised learning in protein interaction networks
por: Shi, Lei, et al.
Publicado: (2011) -
PredHS: a web server for predicting protein–protein interaction hot spots by using structural neighborhood properties
por: Deng, Lei, et al.
Publicado: (2014)