Cargando…
Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing
High-throughput sequencing has revolutionized microbial ecology, but read quality remains a significant barrier to accurate taxonomy assignment and alpha diversity assessment for microbial communities. We demonstrate that high-quality read length and abundance are the primary factors differentiating...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3531572/ https://www.ncbi.nlm.nih.gov/pubmed/23202435 http://dx.doi.org/10.1038/nmeth.2276 |
Sumario: | High-throughput sequencing has revolutionized microbial ecology, but read quality remains a significant barrier to accurate taxonomy assignment and alpha diversity assessment for microbial communities. We demonstrate that high-quality read length and abundance are the primary factors differentiating correct from erroneous reads produced by Illumina GAIIx, HiSeq, and MiSeq instruments. We present guidelines for user-defined quality-filtering strategies, enabling efficient extraction of high-quality data from, and facilitating interpretation of Illumina sequencing results. |
---|