Cargando…

PEP-1-CAT-Transduced Mesenchymal Stem Cells Acquire an Enhanced Viability and Promote Ischemia-Induced Angiogenesis

OBJECTIVE: Poor survival of mesenchymal stem cells (MSC) compromised the efficacy of stem cell therapy for ischemic diseases. The aim of this study is to investigate the role of PEP-1-CAT transduction in MSC survival and its effect on ischemia-induced angiogenesis. METHODS: MSC apoptosis was evaluat...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Lei, Dong, Xiao-Wei, Wang, Jia-Ning, Tang, Jun-Ming, Yang, Jian-Ye, Guo, Ling-Yun, Zheng, Fei, Kong, Xia, Huang, Yong-Zhang, Chen, Shi-You
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3532064/
https://www.ncbi.nlm.nih.gov/pubmed/23285080
http://dx.doi.org/10.1371/journal.pone.0052537
Descripción
Sumario:OBJECTIVE: Poor survival of mesenchymal stem cells (MSC) compromised the efficacy of stem cell therapy for ischemic diseases. The aim of this study is to investigate the role of PEP-1-CAT transduction in MSC survival and its effect on ischemia-induced angiogenesis. METHODS: MSC apoptosis was evaluated by DAPI staining and quantified by Annexin V and PI double staining and Flow Cytometry. Malondialdehyde (MDA) content, lactate dehydrogenase (LDH) release, and Superoxide Dismutase (SOD) activities were simultaneously measured. MSC mitochondrial membrane potential was analyzed with JC-1 staining. MSC survival in rat muscles with gender-mismatched transplantation of the MSC after lower limb ischemia was assessed by detecting SRY expression. MSC apoptosis in ischemic area was determined by TUNEL assay. The effect of PEP-1-CAT-transduced MSC on angiogenesis in vivo was determined in the lower limb ischemia model. RESULTS: PEP-1-CAT transduction decreased MSC apoptosis rate while down-regulating MDA content and blocking LDH release as compared to the treatment with H(2)O(2) or CAT. However, SOD activity was up-regulated in PEP-1-CAT-transduced cells. Consistent with its effect on MSC apoptosis, PEP-1-CAT restored H(2)O(2)-attenuated mitochondrial membrane potential. Mechanistically, PEP-1-CAT blocked H(2)O(2)-induced down-regulation of PI3K/Akt activity, an essential signaling pathway regulating MSC apoptosis. In vivo, the viability of MSC implanted into ischemic area in lower limb ischemia rat model was increased by four-fold when transduced with PEP-1-CAT. Importantly, PEP-1-CAT-transduced MSC significantly enhanced ischemia-induced angiogenesis by up-regulating VEGF expression. CONCLUSIONS: PEP-1-CAT-transduction was able to increase MSC viability by regulating PI3K/Akt activity, which stimulated ischemia-induced angiogenesis.