Cargando…
ABT-737 promotes tBid mitochondrial accumulation to enhance TRAIL-induced apoptosis in glioblastoma cells
To search for novel strategies to enhance the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis pathways in glioblastoma, we used the B-cell lymphoma 2/Bcl2-like 2-inhibitor ABT-737. Here we report that ABT-737 and TRAIL cooperate to induce apoptosis in several gliobl...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3542599/ https://www.ncbi.nlm.nih.gov/pubmed/23190604 http://dx.doi.org/10.1038/cddis.2012.163 |
Sumario: | To search for novel strategies to enhance the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis pathways in glioblastoma, we used the B-cell lymphoma 2/Bcl2-like 2-inhibitor ABT-737. Here we report that ABT-737 and TRAIL cooperate to induce apoptosis in several glioblastoma cell lines in a highly synergistic manner (combination index <0.1). Interestingly, the concerted action of ABT-737 and TRAIL to trigger the accumulation of truncated Bid (tBid) at mitochondrial membranes is identified as a key underlying mechanism. ABT-737 and TRAIL cooperate to cleave BH3-interacting domain death agonist (Bid) into its active fragment tBid, leading to increased accumulation of tBid at mitochondrial membranes. Coinciding with tBid accumulation, the activation of Bcl2-associated X protein (Bax), loss of mitochondrial membrane potential, release of cytochrome-c and second mitochondria-derived activator of caspase (Smac) into the cytosol and caspase activation are strongly increased in cotreated cells. Of note, knockdown of Bid significantly decreases ABT-737- and TRAIL-mediated Bax activation and apoptosis. Also, caspase-3 silencing reduces ABT-737- and TRAIL-induced Bid cleavage and apoptosis, indicating that a caspase-3-driven, mitochondrial feedback loop contributes to Bid processing. Importantly, ABT-737 profoundly enhances TRAIL-triggered apoptosis in primary cultured glioblastoma cells derived from tumor material, underlining the clinical relevance. Also, ABT-737 acts in concert with TRAIL to suppress tumor growth in an in vivo glioblastoma model. In conclusion, the rational combination of ABT-737 and TRAIL cooperates to trigger tBid mitochondrial accumulation and apoptosis. This approach presents a promising strategy for targeting the apoptosis pathways in glioblastoma, which warrants further investigation. |
---|