Cargando…
A comparison of the ability of rilpivirine (TMC278) and selected analogues to inhibit clinically relevant HIV-1 reverse transcriptase mutants
BACKGROUND: The recently approved anti-AIDS drug rilpivirine (TMC278, Edurant) is a nonnucleoside inhibitor (NNRTI) that binds to reverse transcriptase (RT) and allosterically blocks the chemical step of DNA synthesis. In contrast to earlier NNRTIs, rilpivirine retains potency against well-character...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3549755/ https://www.ncbi.nlm.nih.gov/pubmed/23217210 http://dx.doi.org/10.1186/1742-4690-9-99 |
_version_ | 1782256462323515392 |
---|---|
author | Johnson, Barry C Pauly, Gary T Rai, Ganesha Patel, Disha Bauman, Joseph D Baker, Heather L Das, Kalyan Schneider, Joel P Maloney, David J Arnold, Eddy Thomas, Craig J Hughes, Stephen H |
author_facet | Johnson, Barry C Pauly, Gary T Rai, Ganesha Patel, Disha Bauman, Joseph D Baker, Heather L Das, Kalyan Schneider, Joel P Maloney, David J Arnold, Eddy Thomas, Craig J Hughes, Stephen H |
author_sort | Johnson, Barry C |
collection | PubMed |
description | BACKGROUND: The recently approved anti-AIDS drug rilpivirine (TMC278, Edurant) is a nonnucleoside inhibitor (NNRTI) that binds to reverse transcriptase (RT) and allosterically blocks the chemical step of DNA synthesis. In contrast to earlier NNRTIs, rilpivirine retains potency against well-characterized, clinically relevant RT mutants. Many structural analogues of rilpivirine are described in the patent literature, but detailed analyses of their antiviral activities have not been published. This work addresses the ability of several of these analogues to inhibit the replication of wild-type (WT) and drug-resistant HIV-1. RESULTS: We used a combination of structure activity relationships and X-ray crystallography to examine NNRTIs that are structurally related to rilpivirine to determine their ability to inhibit WT RT and several clinically relevant RT mutants. Several analogues showed broad activity with only modest losses of potency when challenged with drug-resistant viruses. Structural analyses (crystallography or modeling) of several analogues whose potencies were reduced by RT mutations provide insight into why these compounds were less effective. CONCLUSIONS: Subtle variations between compounds can lead to profound differences in their activities and resistance profiles. Compounds with larger substitutions replacing the pyrimidine and benzonitrile groups of rilpivirine, which reorient pocket residues, tend to lose more activity against the mutants we tested. These results provide a deeper understanding of how rilpivirine and related compounds interact with the NNRTI binding pocket and should facilitate development of novel inhibitors. |
format | Online Article Text |
id | pubmed-3549755 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-35497552013-01-23 A comparison of the ability of rilpivirine (TMC278) and selected analogues to inhibit clinically relevant HIV-1 reverse transcriptase mutants Johnson, Barry C Pauly, Gary T Rai, Ganesha Patel, Disha Bauman, Joseph D Baker, Heather L Das, Kalyan Schneider, Joel P Maloney, David J Arnold, Eddy Thomas, Craig J Hughes, Stephen H Retrovirology Research BACKGROUND: The recently approved anti-AIDS drug rilpivirine (TMC278, Edurant) is a nonnucleoside inhibitor (NNRTI) that binds to reverse transcriptase (RT) and allosterically blocks the chemical step of DNA synthesis. In contrast to earlier NNRTIs, rilpivirine retains potency against well-characterized, clinically relevant RT mutants. Many structural analogues of rilpivirine are described in the patent literature, but detailed analyses of their antiviral activities have not been published. This work addresses the ability of several of these analogues to inhibit the replication of wild-type (WT) and drug-resistant HIV-1. RESULTS: We used a combination of structure activity relationships and X-ray crystallography to examine NNRTIs that are structurally related to rilpivirine to determine their ability to inhibit WT RT and several clinically relevant RT mutants. Several analogues showed broad activity with only modest losses of potency when challenged with drug-resistant viruses. Structural analyses (crystallography or modeling) of several analogues whose potencies were reduced by RT mutations provide insight into why these compounds were less effective. CONCLUSIONS: Subtle variations between compounds can lead to profound differences in their activities and resistance profiles. Compounds with larger substitutions replacing the pyrimidine and benzonitrile groups of rilpivirine, which reorient pocket residues, tend to lose more activity against the mutants we tested. These results provide a deeper understanding of how rilpivirine and related compounds interact with the NNRTI binding pocket and should facilitate development of novel inhibitors. BioMed Central 2012-12-05 /pmc/articles/PMC3549755/ /pubmed/23217210 http://dx.doi.org/10.1186/1742-4690-9-99 Text en Copyright ©2012 Johnson et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Johnson, Barry C Pauly, Gary T Rai, Ganesha Patel, Disha Bauman, Joseph D Baker, Heather L Das, Kalyan Schneider, Joel P Maloney, David J Arnold, Eddy Thomas, Craig J Hughes, Stephen H A comparison of the ability of rilpivirine (TMC278) and selected analogues to inhibit clinically relevant HIV-1 reverse transcriptase mutants |
title | A comparison of the ability of rilpivirine (TMC278) and selected analogues to inhibit clinically relevant HIV-1 reverse transcriptase mutants |
title_full | A comparison of the ability of rilpivirine (TMC278) and selected analogues to inhibit clinically relevant HIV-1 reverse transcriptase mutants |
title_fullStr | A comparison of the ability of rilpivirine (TMC278) and selected analogues to inhibit clinically relevant HIV-1 reverse transcriptase mutants |
title_full_unstemmed | A comparison of the ability of rilpivirine (TMC278) and selected analogues to inhibit clinically relevant HIV-1 reverse transcriptase mutants |
title_short | A comparison of the ability of rilpivirine (TMC278) and selected analogues to inhibit clinically relevant HIV-1 reverse transcriptase mutants |
title_sort | comparison of the ability of rilpivirine (tmc278) and selected analogues to inhibit clinically relevant hiv-1 reverse transcriptase mutants |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3549755/ https://www.ncbi.nlm.nih.gov/pubmed/23217210 http://dx.doi.org/10.1186/1742-4690-9-99 |
work_keys_str_mv | AT johnsonbarryc acomparisonoftheabilityofrilpivirinetmc278andselectedanaloguestoinhibitclinicallyrelevanthiv1reversetranscriptasemutants AT paulygaryt acomparisonoftheabilityofrilpivirinetmc278andselectedanaloguestoinhibitclinicallyrelevanthiv1reversetranscriptasemutants AT raiganesha acomparisonoftheabilityofrilpivirinetmc278andselectedanaloguestoinhibitclinicallyrelevanthiv1reversetranscriptasemutants AT pateldisha acomparisonoftheabilityofrilpivirinetmc278andselectedanaloguestoinhibitclinicallyrelevanthiv1reversetranscriptasemutants AT baumanjosephd acomparisonoftheabilityofrilpivirinetmc278andselectedanaloguestoinhibitclinicallyrelevanthiv1reversetranscriptasemutants AT bakerheatherl acomparisonoftheabilityofrilpivirinetmc278andselectedanaloguestoinhibitclinicallyrelevanthiv1reversetranscriptasemutants AT daskalyan acomparisonoftheabilityofrilpivirinetmc278andselectedanaloguestoinhibitclinicallyrelevanthiv1reversetranscriptasemutants AT schneiderjoelp acomparisonoftheabilityofrilpivirinetmc278andselectedanaloguestoinhibitclinicallyrelevanthiv1reversetranscriptasemutants AT maloneydavidj acomparisonoftheabilityofrilpivirinetmc278andselectedanaloguestoinhibitclinicallyrelevanthiv1reversetranscriptasemutants AT arnoldeddy acomparisonoftheabilityofrilpivirinetmc278andselectedanaloguestoinhibitclinicallyrelevanthiv1reversetranscriptasemutants AT thomascraigj acomparisonoftheabilityofrilpivirinetmc278andselectedanaloguestoinhibitclinicallyrelevanthiv1reversetranscriptasemutants AT hughesstephenh acomparisonoftheabilityofrilpivirinetmc278andselectedanaloguestoinhibitclinicallyrelevanthiv1reversetranscriptasemutants AT johnsonbarryc comparisonoftheabilityofrilpivirinetmc278andselectedanaloguestoinhibitclinicallyrelevanthiv1reversetranscriptasemutants AT paulygaryt comparisonoftheabilityofrilpivirinetmc278andselectedanaloguestoinhibitclinicallyrelevanthiv1reversetranscriptasemutants AT raiganesha comparisonoftheabilityofrilpivirinetmc278andselectedanaloguestoinhibitclinicallyrelevanthiv1reversetranscriptasemutants AT pateldisha comparisonoftheabilityofrilpivirinetmc278andselectedanaloguestoinhibitclinicallyrelevanthiv1reversetranscriptasemutants AT baumanjosephd comparisonoftheabilityofrilpivirinetmc278andselectedanaloguestoinhibitclinicallyrelevanthiv1reversetranscriptasemutants AT bakerheatherl comparisonoftheabilityofrilpivirinetmc278andselectedanaloguestoinhibitclinicallyrelevanthiv1reversetranscriptasemutants AT daskalyan comparisonoftheabilityofrilpivirinetmc278andselectedanaloguestoinhibitclinicallyrelevanthiv1reversetranscriptasemutants AT schneiderjoelp comparisonoftheabilityofrilpivirinetmc278andselectedanaloguestoinhibitclinicallyrelevanthiv1reversetranscriptasemutants AT maloneydavidj comparisonoftheabilityofrilpivirinetmc278andselectedanaloguestoinhibitclinicallyrelevanthiv1reversetranscriptasemutants AT arnoldeddy comparisonoftheabilityofrilpivirinetmc278andselectedanaloguestoinhibitclinicallyrelevanthiv1reversetranscriptasemutants AT thomascraigj comparisonoftheabilityofrilpivirinetmc278andselectedanaloguestoinhibitclinicallyrelevanthiv1reversetranscriptasemutants AT hughesstephenh comparisonoftheabilityofrilpivirinetmc278andselectedanaloguestoinhibitclinicallyrelevanthiv1reversetranscriptasemutants |