Cargando…

Malaria resistance genes are associated with the levels of IgG subclasses directed against Plasmodium falciparum blood-stage antigens in Burkina Faso

BACKGROUND: HBB, IL4, IL12, TNF, LTA, NCR3 and FCGR2A polymorphisms have been associated with malaria resistance in humans, whereas cytophilic immunoglobulin G (IgG) antibodies are thought to play a critical role in immune protection against asexual blood stages of the parasite. Furthermore, HBB, IL...

Descripción completa

Detalles Bibliográficos
Autores principales: Afridi, Sarwat, Atkinson, Alexandre, Garnier, Séverine, Fumoux, Francis, Rihet, Pascal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552815/
https://www.ncbi.nlm.nih.gov/pubmed/22947458
http://dx.doi.org/10.1186/1475-2875-11-308
Descripción
Sumario:BACKGROUND: HBB, IL4, IL12, TNF, LTA, NCR3 and FCGR2A polymorphisms have been associated with malaria resistance in humans, whereas cytophilic immunoglobulin G (IgG) antibodies are thought to play a critical role in immune protection against asexual blood stages of the parasite. Furthermore, HBB, IL4, TNF, and FCGR2A have been associated with both malaria resistance and IgG levels. This suggests that some malaria resistance genes influence the levels of IgG subclass antibodies. METHODS: In this study, the effect of HBB, IL4, IL12, TNF, LTA, NCR3 and FCGR2A polymorphisms on the levels of IgG responses against Plasmodium falciparum blood-stage extract was investigated in 220 individuals living in Burkina Faso. The Pearson’s correlation coefficient among IgG subclasses was determined. A family-based approach was used to assess the association of polymorphisms with anti-P. falciparum IgG, IgG1, IgG2, IgG3 and IgG4 levels. RESULTS: After applying a multiple test correction, several polymorphisms were associated with IgG subclass or IgG levels. There was an association of i) haemoglobin C with IgG levels; ii) the FcγRIIa H/R131 with IgG2 and IgG3 levels; iii) TNF-863 with IgG3 levels; iv) TNF-857 with IgG levels; and, v) TNF1304 with IgG3, IgG4, and IgG levels. CONCLUSION: Taken together, the results support the hypothesis that some polymorphisms affect malaria resistance through their effect on the acquired immune response, and pave the way towards further comprehension of genetic control of an individual’s humoral response against malaria.