Cargando…

Discrete distribution of implanted and annealed arsenic atoms in silicon nanowires and its effect on device performance

We have theoretically investigated the effects of random discrete distribution of implanted and annealed arsenic (As) atoms on device characteristics of silicon nanowire (Si NW) transistors. Kinetic Monte Carlo simulation is used for generating realistic random distribution of active As atoms in Si...

Descripción completa

Detalles Bibliográficos
Autores principales: Uematsu, Masashi, Itoh, Kohei M, Mil'nikov, Gennady, Minari, Hideki, Mori, Nobuya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552816/
https://www.ncbi.nlm.nih.gov/pubmed/23259464
http://dx.doi.org/10.1186/1556-276X-7-685
Descripción
Sumario:We have theoretically investigated the effects of random discrete distribution of implanted and annealed arsenic (As) atoms on device characteristics of silicon nanowire (Si NW) transistors. Kinetic Monte Carlo simulation is used for generating realistic random distribution of active As atoms in Si NWs. The active As distributions obtained through the kinetic Monte Carlo simulation are introduced into the source and drain extensions of n-type gate-all-around NW transistors. The current–voltage characteristics are calculated using the non-equilibrium Green's function method. The calculated results show significant fluctuation of the drain current. We examine the correlation between the drain current fluctuation and the factors related to random As distributions. We found that the fluctuation of the number of dopants in the source and drain extensions has little effect on the on-current fluctuation. We also found that the on-current fluctuation mainly originated from the randomness of interatomic distances of As atoms and hence is inherent in ultra-small NW transistors.