Cargando…

Biomimetic diversity-oriented synthesis of benzannulated medium rings via ring expansion

Nature has exploited medium-sized 8- to 11-membered rings in a variety of natural products to address diverse and challenging biological targets. However, due to the limitations of conventional cyclization-based approaches to medium-ring synthesis, these structures remain severely underrepresented i...

Descripción completa

Detalles Bibliográficos
Autores principales: Bauer, Renato A., Wenderski, Todd A., Tan, Derek S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3556477/
https://www.ncbi.nlm.nih.gov/pubmed/23160003
http://dx.doi.org/10.1038/nchembio.1130
Descripción
Sumario:Nature has exploited medium-sized 8- to 11-membered rings in a variety of natural products to address diverse and challenging biological targets. However, due to the limitations of conventional cyclization-based approaches to medium-ring synthesis, these structures remain severely underrepresented in current probe and drug discovery efforts. To address this problem, we have established an alternative, biomimetic ring expansion approach to the diversity-oriented synthesis of medium-ring libraries. Oxidative dearomatization of bicyclic phenols affords polycyclic cyclohexadienones that undergo efficient ring expansion to form benzannulated medium-ring scaffolds found in natural products. The ring expansion reaction can be induced using three complementary reagents that avoid competing dienone–phenol rearrangements and is driven by rearomatization of a phenol ring adjacent to the scissile bond. Cheminformatic analysis of the resulting first-generation library confirms that these molecules occupy chemical space overlapping with medium-ring natural products and distinct from that of synthetic drugs and drug-like libraries.