Cargando…
Ibandronate increases the expression of the pro-apoptotic gene FAS by epigenetic mechanisms in tumor cells
There is growing evidence that aminobisphosphonates like ibandronate show anticancer activity by an unknown mechanism. Biochemically, they prevent posttranslational isoprenylation of small GTPases, thus inhibiting their activity. In tumor cells, activated RAS-GTPase, the founding member of the gene...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3557391/ https://www.ncbi.nlm.nih.gov/pubmed/23103563 http://dx.doi.org/10.1016/j.bcp.2012.10.016 |
_version_ | 1782257316250255360 |
---|---|
author | Thaler, R. Spitzer, S. Karlic, H. Berger, C. Klaushofer, K. Varga, F. |
author_facet | Thaler, R. Spitzer, S. Karlic, H. Berger, C. Klaushofer, K. Varga, F. |
author_sort | Thaler, R. |
collection | PubMed |
description | There is growing evidence that aminobisphosphonates like ibandronate show anticancer activity by an unknown mechanism. Biochemically, they prevent posttranslational isoprenylation of small GTPases, thus inhibiting their activity. In tumor cells, activated RAS-GTPase, the founding member of the gene family, down-regulates the expression of the pro-apoptotic gene FAS via epigenetic DNA-methylation by DNMT1. We compared ibandronate treatment in neoplastic human U-2 osteosarcoma and in mouse CCL-51 breast cancer cells as well as in the immortalized non-neoplastic MC3T3-E1 osteoblastic cells. Ibandronate attenuated cell proliferation in all cell lines tested. In the neoplastic cells we found up-regulation of caspases suggesting apoptosis. Further we found stimulation of FAS-expression as a result of epigenetic DNA demethylation that was due to down-regulation of DNMT1, which was rescued by re-isoprenylation by both geranylgeranyl-pyrophosphate and farnesylpyrophosphate. In contrast, ibandronate did not affect FAS and DNMT1 expression in MC3T3-E1 non-neoplastic cells. Data suggest that bisphosphonates via modulation of the activity of small-GTPases induce apoptosis in neoplastic cells by DNA-CpG-demethylation and stimulation of FAS-expression. In conclusion the shown epigenetic mechanism underlying the anti-neoplastic activity of farnesyl-transferase-inhibition, also explains the clinical success of other drugs, which target this pathway. |
format | Online Article Text |
id | pubmed-3557391 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Elsevier Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-35573912013-01-29 Ibandronate increases the expression of the pro-apoptotic gene FAS by epigenetic mechanisms in tumor cells Thaler, R. Spitzer, S. Karlic, H. Berger, C. Klaushofer, K. Varga, F. Biochem Pharmacol Article There is growing evidence that aminobisphosphonates like ibandronate show anticancer activity by an unknown mechanism. Biochemically, they prevent posttranslational isoprenylation of small GTPases, thus inhibiting their activity. In tumor cells, activated RAS-GTPase, the founding member of the gene family, down-regulates the expression of the pro-apoptotic gene FAS via epigenetic DNA-methylation by DNMT1. We compared ibandronate treatment in neoplastic human U-2 osteosarcoma and in mouse CCL-51 breast cancer cells as well as in the immortalized non-neoplastic MC3T3-E1 osteoblastic cells. Ibandronate attenuated cell proliferation in all cell lines tested. In the neoplastic cells we found up-regulation of caspases suggesting apoptosis. Further we found stimulation of FAS-expression as a result of epigenetic DNA demethylation that was due to down-regulation of DNMT1, which was rescued by re-isoprenylation by both geranylgeranyl-pyrophosphate and farnesylpyrophosphate. In contrast, ibandronate did not affect FAS and DNMT1 expression in MC3T3-E1 non-neoplastic cells. Data suggest that bisphosphonates via modulation of the activity of small-GTPases induce apoptosis in neoplastic cells by DNA-CpG-demethylation and stimulation of FAS-expression. In conclusion the shown epigenetic mechanism underlying the anti-neoplastic activity of farnesyl-transferase-inhibition, also explains the clinical success of other drugs, which target this pathway. Elsevier Science 2013-01-15 /pmc/articles/PMC3557391/ /pubmed/23103563 http://dx.doi.org/10.1016/j.bcp.2012.10.016 Text en © 2013 Elsevier Inc. https://creativecommons.org/licenses/by-nc-nd/3.0/ Open Access under CC BY-NC-ND 3.0 (https://creativecommons.org/licenses/by-nc-nd/3.0/) license |
spellingShingle | Article Thaler, R. Spitzer, S. Karlic, H. Berger, C. Klaushofer, K. Varga, F. Ibandronate increases the expression of the pro-apoptotic gene FAS by epigenetic mechanisms in tumor cells |
title | Ibandronate increases the expression of the pro-apoptotic gene FAS by epigenetic mechanisms in tumor cells |
title_full | Ibandronate increases the expression of the pro-apoptotic gene FAS by epigenetic mechanisms in tumor cells |
title_fullStr | Ibandronate increases the expression of the pro-apoptotic gene FAS by epigenetic mechanisms in tumor cells |
title_full_unstemmed | Ibandronate increases the expression of the pro-apoptotic gene FAS by epigenetic mechanisms in tumor cells |
title_short | Ibandronate increases the expression of the pro-apoptotic gene FAS by epigenetic mechanisms in tumor cells |
title_sort | ibandronate increases the expression of the pro-apoptotic gene fas by epigenetic mechanisms in tumor cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3557391/ https://www.ncbi.nlm.nih.gov/pubmed/23103563 http://dx.doi.org/10.1016/j.bcp.2012.10.016 |
work_keys_str_mv | AT thalerr ibandronateincreasestheexpressionoftheproapoptoticgenefasbyepigeneticmechanismsintumorcells AT spitzers ibandronateincreasestheexpressionoftheproapoptoticgenefasbyepigeneticmechanismsintumorcells AT karlich ibandronateincreasestheexpressionoftheproapoptoticgenefasbyepigeneticmechanismsintumorcells AT bergerc ibandronateincreasestheexpressionoftheproapoptoticgenefasbyepigeneticmechanismsintumorcells AT klaushoferk ibandronateincreasestheexpressionoftheproapoptoticgenefasbyepigeneticmechanismsintumorcells AT vargaf ibandronateincreasestheexpressionoftheproapoptoticgenefasbyepigeneticmechanismsintumorcells |