Cargando…
A novel algorithm for simultaneous SNP selection in high-dimensional genome-wide association studies
BACKGROUND: Identification of causal SNPs in most genome wide association studies relies on approaches that consider each SNP individually. However, there is a strong correlation structure among SNPs that needs to be taken into account. Hence, increasingly modern computationally expensive regression...
Autores principales: | Zuber, Verena, Duarte Silva, A Pedro, Strimmer, Korbinian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3558454/ https://www.ncbi.nlm.nih.gov/pubmed/23113980 http://dx.doi.org/10.1186/1471-2105-13-284 |
Ejemplares similares
-
From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data
por: Opgen-Rhein, Rainer, et al.
Publicado: (2007) -
A unified approach to false discovery rate estimation
por: Strimmer, Korbinian
Publicado: (2008) -
A general modular framework for gene set enrichment analysis
por: Ackermann, Marit, et al.
Publicado: (2009) -
A whitening approach to probabilistic canonical correlation analysis for omics data integration
por: Jendoubi, Takoua, et al.
Publicado: (2019) -
Improved branch and bound algorithm for detecting SNP-SNP interactions in breast cancer
por: Chuang, Li-Yeh, et al.
Publicado: (2013)