Cargando…

Heterogeneous Reallocation of Presynaptic Efficacy in Recurrent Excitatory Circuits Adapting to Inactivity

Recurrent excitatory circuits face extreme challenges in balancing efficacy and stability. We recorded from CA3 pyramidal neuron pairs in rat hippocampal slice cultures to characterize synaptic and circuit-level changes in recurrent synapses resulting from long-term inactivity. Chronic TTX-treatment...

Descripción completa

Detalles Bibliográficos
Autores principales: Mitra, Ananya, Mitra, Siddhartha S., Tsien, Richard W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3558750/
https://www.ncbi.nlm.nih.gov/pubmed/22179109
http://dx.doi.org/10.1038/nn.3004
Descripción
Sumario:Recurrent excitatory circuits face extreme challenges in balancing efficacy and stability. We recorded from CA3 pyramidal neuron pairs in rat hippocampal slice cultures to characterize synaptic and circuit-level changes in recurrent synapses resulting from long-term inactivity. Chronic TTX-treatment greatly reduced the percentage of connected CA3-CA3 neurons but enhanced the strength of the remaining connections; presynaptic release probability sharply increased while quantal size was unaltered. Connectivity was decreased in activity-deprived circuits by functional silencing of synapses, whereas 3D anatomical analysis revealed no change in spine or bouton density or aggregate dendrite length. The silencing arose from enhanced Cdk5 activity and could be reverted by acute Cdk5 inhibition with roscovitine. Our results suggest that recurrent circuits adapt to chronic inactivity by reallocating presynaptic weights heterogeneously, strengthening certain connections while silencing others. This restricts synaptic output and input, preserving signaling efficacy among a subset of neuronal ensembles while also protecting network stability.