Cargando…

Visuomotor Learning Enhanced by Augmenting Instantaneous Trajectory Error Feedback during Reaching

We studied reach adaptation to a 30° visuomotor rotation to determine whether augmented error feedback can promote faster and more complete motor learning. Four groups of healthy adults reached with their unseen arm to visual targets surrounding a central starting point. A manipulandum tracked hand...

Descripción completa

Detalles Bibliográficos
Autores principales: Patton, James L., Wei, Yejun John, Bajaj, Preeti, Scheidt, Robert A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3559751/
https://www.ncbi.nlm.nih.gov/pubmed/23382796
http://dx.doi.org/10.1371/journal.pone.0046466
Descripción
Sumario:We studied reach adaptation to a 30° visuomotor rotation to determine whether augmented error feedback can promote faster and more complete motor learning. Four groups of healthy adults reached with their unseen arm to visual targets surrounding a central starting point. A manipulandum tracked hand motion and projected a cursor onto a display immediately above the horizontal plane of movement. For one group, deviations from the ideal movement were amplified with a gain of 2 whereas another group experienced a gain of 3.1. The third group experienced an offset equal to the average error seen in the initial perturbations, while a fourth group served as controls. Learning in the gain 2 and offset groups was nearly twice as fast as controls. Moreover, the offset group averaged more reduction in error. Such error augmentation techniques may be useful for training novel visuomotor transformations as required of robotic teleoperators or in movement rehabilitation of the neurologically impaired.