Cargando…
Fingerprints of Adiabatic versus Diabatic Vibronic Dynamics in the Asymmetry of Photoelectron Momentum Distributions
[Image: see text] When the Born–Oppenheimer approximation is valid, electrons adiabatically follow the nuclear motion in molecules. For strong nonadiabatic coupling between electronic states, one encounters a diabatic motion where the electrons remain local and do not adapt to molecular geometry cha...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2012
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3560423/ https://www.ncbi.nlm.nih.gov/pubmed/23378888 http://dx.doi.org/10.1021/jz3009826 |
Sumario: | [Image: see text] When the Born–Oppenheimer approximation is valid, electrons adiabatically follow the nuclear motion in molecules. For strong nonadiabatic coupling between electronic states, one encounters a diabatic motion where the electrons remain local and do not adapt to molecular geometry changes. We show that the mentioned limiting cases are reflected differently in the asymmetry of time-resolved photoelectron momentum distributions. Whereas for adiabatic dynamics, the asymmetry directly maps the time-dependent average nuclear momentum, in the diabatic case, the asymmetry is determined by a nonclassical interference effect arising from the mixing of wave function components in different electronic states, which is present at times nonadiabatic transitions take place. |
---|