Cargando…
An Incompatibility between a Mitochondrial tRNA and Its Nuclear-Encoded tRNA Synthetase Compromises Development and Fitness in Drosophila
Mitochondrial transcription, translation, and respiration require interactions between genes encoded in two distinct genomes, generating the potential for mutations in nuclear and mitochondrial genomes to interact epistatically and cause incompatibilities that decrease fitness. Mitochondrial-nuclear...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561102/ https://www.ncbi.nlm.nih.gov/pubmed/23382693 http://dx.doi.org/10.1371/journal.pgen.1003238 |
_version_ | 1782257902468202496 |
---|---|
author | Meiklejohn, Colin D. Holmbeck, Marissa A. Siddiq, Mohammad A. Abt, Dawn N. Rand, David M. Montooth, Kristi L. |
author_facet | Meiklejohn, Colin D. Holmbeck, Marissa A. Siddiq, Mohammad A. Abt, Dawn N. Rand, David M. Montooth, Kristi L. |
author_sort | Meiklejohn, Colin D. |
collection | PubMed |
description | Mitochondrial transcription, translation, and respiration require interactions between genes encoded in two distinct genomes, generating the potential for mutations in nuclear and mitochondrial genomes to interact epistatically and cause incompatibilities that decrease fitness. Mitochondrial-nuclear epistasis for fitness has been documented within and between populations and species of diverse taxa, but rarely has the genetic or mechanistic basis of these mitochondrial–nuclear interactions been elucidated, limiting our understanding of which genes harbor variants causing mitochondrial–nuclear disruption and of the pathways and processes that are impacted by mitochondrial–nuclear coevolution. Here we identify an amino acid polymorphism in the Drosophila melanogaster nuclear-encoded mitochondrial tyrosyl–tRNA synthetase that interacts epistatically with a polymorphism in the D. simulans mitochondrial-encoded tRNA(Tyr) to significantly delay development, compromise bristle formation, and decrease fecundity. The incompatible genotype specifically decreases the activities of oxidative phosphorylation complexes I, III, and IV that contain mitochondrial-encoded subunits. Combined with the identity of the interacting alleles, this pattern indicates that mitochondrial protein translation is affected by this interaction. Our findings suggest that interactions between mitochondrial tRNAs and their nuclear-encoded tRNA synthetases may be targets of compensatory molecular evolution. Human mitochondrial diseases are often genetically complex and variable in penetrance, and the mitochondrial–nuclear interaction we document provides a plausible mechanism to explain this complexity. |
format | Online Article Text |
id | pubmed-3561102 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-35611022013-02-04 An Incompatibility between a Mitochondrial tRNA and Its Nuclear-Encoded tRNA Synthetase Compromises Development and Fitness in Drosophila Meiklejohn, Colin D. Holmbeck, Marissa A. Siddiq, Mohammad A. Abt, Dawn N. Rand, David M. Montooth, Kristi L. PLoS Genet Research Article Mitochondrial transcription, translation, and respiration require interactions between genes encoded in two distinct genomes, generating the potential for mutations in nuclear and mitochondrial genomes to interact epistatically and cause incompatibilities that decrease fitness. Mitochondrial-nuclear epistasis for fitness has been documented within and between populations and species of diverse taxa, but rarely has the genetic or mechanistic basis of these mitochondrial–nuclear interactions been elucidated, limiting our understanding of which genes harbor variants causing mitochondrial–nuclear disruption and of the pathways and processes that are impacted by mitochondrial–nuclear coevolution. Here we identify an amino acid polymorphism in the Drosophila melanogaster nuclear-encoded mitochondrial tyrosyl–tRNA synthetase that interacts epistatically with a polymorphism in the D. simulans mitochondrial-encoded tRNA(Tyr) to significantly delay development, compromise bristle formation, and decrease fecundity. The incompatible genotype specifically decreases the activities of oxidative phosphorylation complexes I, III, and IV that contain mitochondrial-encoded subunits. Combined with the identity of the interacting alleles, this pattern indicates that mitochondrial protein translation is affected by this interaction. Our findings suggest that interactions between mitochondrial tRNAs and their nuclear-encoded tRNA synthetases may be targets of compensatory molecular evolution. Human mitochondrial diseases are often genetically complex and variable in penetrance, and the mitochondrial–nuclear interaction we document provides a plausible mechanism to explain this complexity. Public Library of Science 2013-01-31 /pmc/articles/PMC3561102/ /pubmed/23382693 http://dx.doi.org/10.1371/journal.pgen.1003238 Text en © 2013 Meiklejohn et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Meiklejohn, Colin D. Holmbeck, Marissa A. Siddiq, Mohammad A. Abt, Dawn N. Rand, David M. Montooth, Kristi L. An Incompatibility between a Mitochondrial tRNA and Its Nuclear-Encoded tRNA Synthetase Compromises Development and Fitness in Drosophila |
title | An Incompatibility between a Mitochondrial tRNA and Its Nuclear-Encoded tRNA Synthetase Compromises Development and Fitness in Drosophila
|
title_full | An Incompatibility between a Mitochondrial tRNA and Its Nuclear-Encoded tRNA Synthetase Compromises Development and Fitness in Drosophila
|
title_fullStr | An Incompatibility between a Mitochondrial tRNA and Its Nuclear-Encoded tRNA Synthetase Compromises Development and Fitness in Drosophila
|
title_full_unstemmed | An Incompatibility between a Mitochondrial tRNA and Its Nuclear-Encoded tRNA Synthetase Compromises Development and Fitness in Drosophila
|
title_short | An Incompatibility between a Mitochondrial tRNA and Its Nuclear-Encoded tRNA Synthetase Compromises Development and Fitness in Drosophila
|
title_sort | incompatibility between a mitochondrial trna and its nuclear-encoded trna synthetase compromises development and fitness in drosophila |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561102/ https://www.ncbi.nlm.nih.gov/pubmed/23382693 http://dx.doi.org/10.1371/journal.pgen.1003238 |
work_keys_str_mv | AT meiklejohncolind anincompatibilitybetweenamitochondrialtrnaanditsnuclearencodedtrnasynthetasecompromisesdevelopmentandfitnessindrosophila AT holmbeckmarissaa anincompatibilitybetweenamitochondrialtrnaanditsnuclearencodedtrnasynthetasecompromisesdevelopmentandfitnessindrosophila AT siddiqmohammada anincompatibilitybetweenamitochondrialtrnaanditsnuclearencodedtrnasynthetasecompromisesdevelopmentandfitnessindrosophila AT abtdawnn anincompatibilitybetweenamitochondrialtrnaanditsnuclearencodedtrnasynthetasecompromisesdevelopmentandfitnessindrosophila AT randdavidm anincompatibilitybetweenamitochondrialtrnaanditsnuclearencodedtrnasynthetasecompromisesdevelopmentandfitnessindrosophila AT montoothkristil anincompatibilitybetweenamitochondrialtrnaanditsnuclearencodedtrnasynthetasecompromisesdevelopmentandfitnessindrosophila AT meiklejohncolind incompatibilitybetweenamitochondrialtrnaanditsnuclearencodedtrnasynthetasecompromisesdevelopmentandfitnessindrosophila AT holmbeckmarissaa incompatibilitybetweenamitochondrialtrnaanditsnuclearencodedtrnasynthetasecompromisesdevelopmentandfitnessindrosophila AT siddiqmohammada incompatibilitybetweenamitochondrialtrnaanditsnuclearencodedtrnasynthetasecompromisesdevelopmentandfitnessindrosophila AT abtdawnn incompatibilitybetweenamitochondrialtrnaanditsnuclearencodedtrnasynthetasecompromisesdevelopmentandfitnessindrosophila AT randdavidm incompatibilitybetweenamitochondrialtrnaanditsnuclearencodedtrnasynthetasecompromisesdevelopmentandfitnessindrosophila AT montoothkristil incompatibilitybetweenamitochondrialtrnaanditsnuclearencodedtrnasynthetasecompromisesdevelopmentandfitnessindrosophila |