Cargando…
Microdomains of muscarinic acetylcholine and Ins(1,4,5)P(3) receptors create ‘Ins(1,4,5)P(3) junctions’ and sites of Ca(2+) wave initiation in smooth muscle
Increases in cytosolic Ca(2+) concentration ([Ca(2+)](c)) mediated by inositol (1,4,5)-trisphosphate [Ins(1,4,5)P(3), hereafter InsP(3)] regulate activities that include division, contraction and cell death. InsP(3)-evoked Ca(2+) release often begins at a single site, then regeneratively propagates...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561854/ https://www.ncbi.nlm.nih.gov/pubmed/22946060 http://dx.doi.org/10.1242/jcs.105163 |
_version_ | 1782258009270910976 |
---|---|
author | Olson, Marnie L. Sandison, Mairi E. Chalmers, Susan McCarron, John G. |
author_facet | Olson, Marnie L. Sandison, Mairi E. Chalmers, Susan McCarron, John G. |
author_sort | Olson, Marnie L. |
collection | PubMed |
description | Increases in cytosolic Ca(2+) concentration ([Ca(2+)](c)) mediated by inositol (1,4,5)-trisphosphate [Ins(1,4,5)P(3), hereafter InsP(3)] regulate activities that include division, contraction and cell death. InsP(3)-evoked Ca(2+) release often begins at a single site, then regeneratively propagates through the cell as a Ca(2+) wave. The Ca(2+) wave consistently begins at the same site on successive activations. Here, we address the mechanisms that determine the Ca(2+) wave initiation site in intestinal smooth muscle cells. Neither an increased sensitivity of InsP(3) receptors (InsP(3)R) to InsP(3) nor regional clustering of muscarinic receptors (mAChR3) or InsP(3)R1 explained the selection of an initiation site. However, examination of the overlap of mAChR3 and InsP(3)R1 localisation, by centre of mass analysis, revealed that there was a small percentage (∼10%) of sites that showed colocalisation. Indeed, the extent of colocalisation was greatest at the Ca(2+) wave initiation site. The initiation site might arise from a selective delivery of InsP(3) from mAChR3 activity to particular InsP(3)Rs to generate faster local [Ca(2+)](c) increases at sites of colocalisation. In support of this hypothesis, a localised subthreshold ‘priming’ InsP(3) concentration applied rapidly, but at regions distant from the initiation site, shifted the wave to the site of the priming. Conversely, when the Ca(2+) rise at the initiation site was rapidly and selectively attenuated, the Ca(2+) wave again shifted and initiated at a new site. These results indicate that Ca(2+) waves initiate where there is a structural and functional coupling of mAChR3 and InsP(3)R1, which generates junctions in which InsP(3) acts as a highly localised signal by being rapidly and selectively delivered to InsP(3)R1. |
format | Online Article Text |
id | pubmed-3561854 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | The Company of Biologists |
record_format | MEDLINE/PubMed |
spelling | pubmed-35618542013-11-15 Microdomains of muscarinic acetylcholine and Ins(1,4,5)P(3) receptors create ‘Ins(1,4,5)P(3) junctions’ and sites of Ca(2+) wave initiation in smooth muscle Olson, Marnie L. Sandison, Mairi E. Chalmers, Susan McCarron, John G. J Cell Sci Research Article Increases in cytosolic Ca(2+) concentration ([Ca(2+)](c)) mediated by inositol (1,4,5)-trisphosphate [Ins(1,4,5)P(3), hereafter InsP(3)] regulate activities that include division, contraction and cell death. InsP(3)-evoked Ca(2+) release often begins at a single site, then regeneratively propagates through the cell as a Ca(2+) wave. The Ca(2+) wave consistently begins at the same site on successive activations. Here, we address the mechanisms that determine the Ca(2+) wave initiation site in intestinal smooth muscle cells. Neither an increased sensitivity of InsP(3) receptors (InsP(3)R) to InsP(3) nor regional clustering of muscarinic receptors (mAChR3) or InsP(3)R1 explained the selection of an initiation site. However, examination of the overlap of mAChR3 and InsP(3)R1 localisation, by centre of mass analysis, revealed that there was a small percentage (∼10%) of sites that showed colocalisation. Indeed, the extent of colocalisation was greatest at the Ca(2+) wave initiation site. The initiation site might arise from a selective delivery of InsP(3) from mAChR3 activity to particular InsP(3)Rs to generate faster local [Ca(2+)](c) increases at sites of colocalisation. In support of this hypothesis, a localised subthreshold ‘priming’ InsP(3) concentration applied rapidly, but at regions distant from the initiation site, shifted the wave to the site of the priming. Conversely, when the Ca(2+) rise at the initiation site was rapidly and selectively attenuated, the Ca(2+) wave again shifted and initiated at a new site. These results indicate that Ca(2+) waves initiate where there is a structural and functional coupling of mAChR3 and InsP(3)R1, which generates junctions in which InsP(3) acts as a highly localised signal by being rapidly and selectively delivered to InsP(3)R1. The Company of Biologists 2012-11-15 /pmc/articles/PMC3561854/ /pubmed/22946060 http://dx.doi.org/10.1242/jcs.105163 Text en © 2012. Published by The Company of Biologists Ltd http://creativecommons.org/licenses/by-nc-sa/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Share Alike License (http://creativecommons.org/licenses/by-nc-sa/3.0/), which permits unrestricted non-commercial use, distribution and reproduction in any medium provided that the original work is properly cited and all further distributions of the work or adaptation are subject to the same Creative Commons License terms. |
spellingShingle | Research Article Olson, Marnie L. Sandison, Mairi E. Chalmers, Susan McCarron, John G. Microdomains of muscarinic acetylcholine and Ins(1,4,5)P(3) receptors create ‘Ins(1,4,5)P(3) junctions’ and sites of Ca(2+) wave initiation in smooth muscle |
title | Microdomains of muscarinic acetylcholine and Ins(1,4,5)P(3) receptors create ‘Ins(1,4,5)P(3) junctions’ and sites of Ca(2+) wave initiation in smooth muscle |
title_full | Microdomains of muscarinic acetylcholine and Ins(1,4,5)P(3) receptors create ‘Ins(1,4,5)P(3) junctions’ and sites of Ca(2+) wave initiation in smooth muscle |
title_fullStr | Microdomains of muscarinic acetylcholine and Ins(1,4,5)P(3) receptors create ‘Ins(1,4,5)P(3) junctions’ and sites of Ca(2+) wave initiation in smooth muscle |
title_full_unstemmed | Microdomains of muscarinic acetylcholine and Ins(1,4,5)P(3) receptors create ‘Ins(1,4,5)P(3) junctions’ and sites of Ca(2+) wave initiation in smooth muscle |
title_short | Microdomains of muscarinic acetylcholine and Ins(1,4,5)P(3) receptors create ‘Ins(1,4,5)P(3) junctions’ and sites of Ca(2+) wave initiation in smooth muscle |
title_sort | microdomains of muscarinic acetylcholine and ins(1,4,5)p(3) receptors create ‘ins(1,4,5)p(3) junctions’ and sites of ca(2+) wave initiation in smooth muscle |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561854/ https://www.ncbi.nlm.nih.gov/pubmed/22946060 http://dx.doi.org/10.1242/jcs.105163 |
work_keys_str_mv | AT olsonmarniel microdomainsofmuscarinicacetylcholineandins145p3receptorscreateins145p3junctionsandsitesofca2waveinitiationinsmoothmuscle AT sandisonmairie microdomainsofmuscarinicacetylcholineandins145p3receptorscreateins145p3junctionsandsitesofca2waveinitiationinsmoothmuscle AT chalmerssusan microdomainsofmuscarinicacetylcholineandins145p3receptorscreateins145p3junctionsandsitesofca2waveinitiationinsmoothmuscle AT mccarronjohng microdomainsofmuscarinicacetylcholineandins145p3receptorscreateins145p3junctionsandsitesofca2waveinitiationinsmoothmuscle |