Cargando…
Constitutive nuclear lamina–genome interactions are highly conserved and associated with A/T-rich sequence
In metazoans, the nuclear lamina is thought to play an important role in the spatial organization of interphase chromosomes, by providing anchoring sites for large genomic segments named lamina-associated domains (LADs). Some of these LADs are cell-type specific, while many others appear constitutiv...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561868/ https://www.ncbi.nlm.nih.gov/pubmed/23124521 http://dx.doi.org/10.1101/gr.141028.112 |
_version_ | 1782258010668662784 |
---|---|
author | Meuleman, Wouter Peric-Hupkes, Daan Kind, Jop Beaudry, Jean-Bernard Pagie, Ludo Kellis, Manolis Reinders, Marcel Wessels, Lodewyk van Steensel, Bas |
author_facet | Meuleman, Wouter Peric-Hupkes, Daan Kind, Jop Beaudry, Jean-Bernard Pagie, Ludo Kellis, Manolis Reinders, Marcel Wessels, Lodewyk van Steensel, Bas |
author_sort | Meuleman, Wouter |
collection | PubMed |
description | In metazoans, the nuclear lamina is thought to play an important role in the spatial organization of interphase chromosomes, by providing anchoring sites for large genomic segments named lamina-associated domains (LADs). Some of these LADs are cell-type specific, while many others appear constitutively associated with the lamina. Constitutive LADs (cLADs) may contribute to a basal chromosome architecture. By comparison of mouse and human lamina interaction maps, we find that the sizes and genomic positions of cLADs are strongly conserved. Moreover, cLADs are depleted of synteny breakpoints, pointing to evolutionary selective pressure to keep cLADs intact. Paradoxically, the overall sequence conservation is low for cLADs. Instead, cLADs are universally characterized by long stretches of DNA of high A/T content. Cell-type specific LADs also tend to adhere to this “A/T rule” in embryonic stem cells, but not in differentiated cells. This suggests that the A/T rule represents a default positioning mechanism that is locally overruled during lineage commitment. Analysis of paralogs suggests that during evolution changes in A/T content have driven the relocation of genes to and from the nuclear lamina, in tight association with changes in expression level. Taken together, these results reveal that the spatial organization of mammalian genomes is highly conserved and tightly linked to local nucleotide composition. |
format | Online Article Text |
id | pubmed-3561868 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Cold Spring Harbor Laboratory Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-35618682013-08-01 Constitutive nuclear lamina–genome interactions are highly conserved and associated with A/T-rich sequence Meuleman, Wouter Peric-Hupkes, Daan Kind, Jop Beaudry, Jean-Bernard Pagie, Ludo Kellis, Manolis Reinders, Marcel Wessels, Lodewyk van Steensel, Bas Genome Res Research In metazoans, the nuclear lamina is thought to play an important role in the spatial organization of interphase chromosomes, by providing anchoring sites for large genomic segments named lamina-associated domains (LADs). Some of these LADs are cell-type specific, while many others appear constitutively associated with the lamina. Constitutive LADs (cLADs) may contribute to a basal chromosome architecture. By comparison of mouse and human lamina interaction maps, we find that the sizes and genomic positions of cLADs are strongly conserved. Moreover, cLADs are depleted of synteny breakpoints, pointing to evolutionary selective pressure to keep cLADs intact. Paradoxically, the overall sequence conservation is low for cLADs. Instead, cLADs are universally characterized by long stretches of DNA of high A/T content. Cell-type specific LADs also tend to adhere to this “A/T rule” in embryonic stem cells, but not in differentiated cells. This suggests that the A/T rule represents a default positioning mechanism that is locally overruled during lineage commitment. Analysis of paralogs suggests that during evolution changes in A/T content have driven the relocation of genes to and from the nuclear lamina, in tight association with changes in expression level. Taken together, these results reveal that the spatial organization of mammalian genomes is highly conserved and tightly linked to local nucleotide composition. Cold Spring Harbor Laboratory Press 2013-02 /pmc/articles/PMC3561868/ /pubmed/23124521 http://dx.doi.org/10.1101/gr.141028.112 Text en © 2013, Published by Cold Spring Harbor Laboratory Press http://creativecommons.org/licenses/by-nc/3.0/ This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 3.0 Unported License), as described at http://creativecommons.org/licenses/by-nc/3.0/. |
spellingShingle | Research Meuleman, Wouter Peric-Hupkes, Daan Kind, Jop Beaudry, Jean-Bernard Pagie, Ludo Kellis, Manolis Reinders, Marcel Wessels, Lodewyk van Steensel, Bas Constitutive nuclear lamina–genome interactions are highly conserved and associated with A/T-rich sequence |
title | Constitutive nuclear lamina–genome interactions are highly conserved and associated with A/T-rich sequence |
title_full | Constitutive nuclear lamina–genome interactions are highly conserved and associated with A/T-rich sequence |
title_fullStr | Constitutive nuclear lamina–genome interactions are highly conserved and associated with A/T-rich sequence |
title_full_unstemmed | Constitutive nuclear lamina–genome interactions are highly conserved and associated with A/T-rich sequence |
title_short | Constitutive nuclear lamina–genome interactions are highly conserved and associated with A/T-rich sequence |
title_sort | constitutive nuclear lamina–genome interactions are highly conserved and associated with a/t-rich sequence |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561868/ https://www.ncbi.nlm.nih.gov/pubmed/23124521 http://dx.doi.org/10.1101/gr.141028.112 |
work_keys_str_mv | AT meulemanwouter constitutivenuclearlaminagenomeinteractionsarehighlyconservedandassociatedwithatrichsequence AT perichupkesdaan constitutivenuclearlaminagenomeinteractionsarehighlyconservedandassociatedwithatrichsequence AT kindjop constitutivenuclearlaminagenomeinteractionsarehighlyconservedandassociatedwithatrichsequence AT beaudryjeanbernard constitutivenuclearlaminagenomeinteractionsarehighlyconservedandassociatedwithatrichsequence AT pagieludo constitutivenuclearlaminagenomeinteractionsarehighlyconservedandassociatedwithatrichsequence AT kellismanolis constitutivenuclearlaminagenomeinteractionsarehighlyconservedandassociatedwithatrichsequence AT reindersmarcel constitutivenuclearlaminagenomeinteractionsarehighlyconservedandassociatedwithatrichsequence AT wesselslodewyk constitutivenuclearlaminagenomeinteractionsarehighlyconservedandassociatedwithatrichsequence AT vansteenselbas constitutivenuclearlaminagenomeinteractionsarehighlyconservedandassociatedwithatrichsequence |