Cargando…

Reduction in ATP Levels Triggers Immunoproteasome Activation by the 11S (PA28) Regulator during Early Antiviral Response Mediated by IFNβ in Mouse Pancreatic β-Cells

Autoimmune destruction of insulin producing pancreatic β-cells is the hallmark of type I diabetes. One of the key molecules implicated in the disease onset is the immunoproteasome, a protease with multiple proteolytic sites that collaborates with the constitutive 19S and the inducible 11S (PA28) act...

Descripción completa

Detalles Bibliográficos
Autores principales: Freudenburg, Wieke, Gautam, Madhav, Chakraborty, Pradipta, James, Jared, Richards, Jennifer, Salvatori, Alison S., Baldwin, Aaron, Schriewer, Jill, Buller, R. Mark L, Corbett, John A., Skowyra, Dorota
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3562186/
https://www.ncbi.nlm.nih.gov/pubmed/23383295
http://dx.doi.org/10.1371/journal.pone.0052408
_version_ 1782258051660644352
author Freudenburg, Wieke
Gautam, Madhav
Chakraborty, Pradipta
James, Jared
Richards, Jennifer
Salvatori, Alison S.
Baldwin, Aaron
Schriewer, Jill
Buller, R. Mark L
Corbett, John A.
Skowyra, Dorota
author_facet Freudenburg, Wieke
Gautam, Madhav
Chakraborty, Pradipta
James, Jared
Richards, Jennifer
Salvatori, Alison S.
Baldwin, Aaron
Schriewer, Jill
Buller, R. Mark L
Corbett, John A.
Skowyra, Dorota
author_sort Freudenburg, Wieke
collection PubMed
description Autoimmune destruction of insulin producing pancreatic β-cells is the hallmark of type I diabetes. One of the key molecules implicated in the disease onset is the immunoproteasome, a protease with multiple proteolytic sites that collaborates with the constitutive 19S and the inducible 11S (PA28) activators to produce immunogenic peptides for presentation by MHC class I molecules. Despite its importance, little is known about the function and regulation of the immunoproteasome in pancreatic β-cells. Of special interest to immunoproteasome activation in β-cells are the effects of IFNβ, a type I IFN secreted by virus-infected cells and implicated in type I diabetes onset, compared to IFNγ, the classic immunoproteasome inducer secreted by cells of the immune system. By qPCR analysis, we show that mouse insulinoma MIN6 cells and mouse islets accumulate the immune proteolytic β1(i), β2(i) and β5(i), and 11S mRNAs upon exposure to IFNβ or IFNγ. Higher concentrations of IFNβ than IFNγ are needed for similar expression, but in each case the expression is transient, with maximal mRNA accumulation in 12 hours, and depends primarily on Interferon Regulatory Factor 1. IFNs do not alter expression of regular proteasome genes, and in the time frame of IFNβ-mediated response, the immune and regular proteolytic subunits co-exist in the 20S particles. In cell extracts with ATP, these particles have normal peptidase activities and degrade polyubiquitinated proteins with rates typical of the regular proteasome, implicating normal regulation by the 19S activator. However, ATP depletion rapidly stimulates the catalytic rates in a manner consistent with levels of the 11S activator. These findings suggest that stochastic combination of regular and immune proteolytic subunits may increase the probability with which unique immunogenic peptides are produced in pancreatic β-cells exposed to IFNβ, but primarily in cells with reduced ATP levels that stimulate the 11S participation in immunoproteasome function.
format Online
Article
Text
id pubmed-3562186
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-35621862013-02-04 Reduction in ATP Levels Triggers Immunoproteasome Activation by the 11S (PA28) Regulator during Early Antiviral Response Mediated by IFNβ in Mouse Pancreatic β-Cells Freudenburg, Wieke Gautam, Madhav Chakraborty, Pradipta James, Jared Richards, Jennifer Salvatori, Alison S. Baldwin, Aaron Schriewer, Jill Buller, R. Mark L Corbett, John A. Skowyra, Dorota PLoS One Research Article Autoimmune destruction of insulin producing pancreatic β-cells is the hallmark of type I diabetes. One of the key molecules implicated in the disease onset is the immunoproteasome, a protease with multiple proteolytic sites that collaborates with the constitutive 19S and the inducible 11S (PA28) activators to produce immunogenic peptides for presentation by MHC class I molecules. Despite its importance, little is known about the function and regulation of the immunoproteasome in pancreatic β-cells. Of special interest to immunoproteasome activation in β-cells are the effects of IFNβ, a type I IFN secreted by virus-infected cells and implicated in type I diabetes onset, compared to IFNγ, the classic immunoproteasome inducer secreted by cells of the immune system. By qPCR analysis, we show that mouse insulinoma MIN6 cells and mouse islets accumulate the immune proteolytic β1(i), β2(i) and β5(i), and 11S mRNAs upon exposure to IFNβ or IFNγ. Higher concentrations of IFNβ than IFNγ are needed for similar expression, but in each case the expression is transient, with maximal mRNA accumulation in 12 hours, and depends primarily on Interferon Regulatory Factor 1. IFNs do not alter expression of regular proteasome genes, and in the time frame of IFNβ-mediated response, the immune and regular proteolytic subunits co-exist in the 20S particles. In cell extracts with ATP, these particles have normal peptidase activities and degrade polyubiquitinated proteins with rates typical of the regular proteasome, implicating normal regulation by the 19S activator. However, ATP depletion rapidly stimulates the catalytic rates in a manner consistent with levels of the 11S activator. These findings suggest that stochastic combination of regular and immune proteolytic subunits may increase the probability with which unique immunogenic peptides are produced in pancreatic β-cells exposed to IFNβ, but primarily in cells with reduced ATP levels that stimulate the 11S participation in immunoproteasome function. Public Library of Science 2013-02-01 /pmc/articles/PMC3562186/ /pubmed/23383295 http://dx.doi.org/10.1371/journal.pone.0052408 Text en © 2013 Freudenburg et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Freudenburg, Wieke
Gautam, Madhav
Chakraborty, Pradipta
James, Jared
Richards, Jennifer
Salvatori, Alison S.
Baldwin, Aaron
Schriewer, Jill
Buller, R. Mark L
Corbett, John A.
Skowyra, Dorota
Reduction in ATP Levels Triggers Immunoproteasome Activation by the 11S (PA28) Regulator during Early Antiviral Response Mediated by IFNβ in Mouse Pancreatic β-Cells
title Reduction in ATP Levels Triggers Immunoproteasome Activation by the 11S (PA28) Regulator during Early Antiviral Response Mediated by IFNβ in Mouse Pancreatic β-Cells
title_full Reduction in ATP Levels Triggers Immunoproteasome Activation by the 11S (PA28) Regulator during Early Antiviral Response Mediated by IFNβ in Mouse Pancreatic β-Cells
title_fullStr Reduction in ATP Levels Triggers Immunoproteasome Activation by the 11S (PA28) Regulator during Early Antiviral Response Mediated by IFNβ in Mouse Pancreatic β-Cells
title_full_unstemmed Reduction in ATP Levels Triggers Immunoproteasome Activation by the 11S (PA28) Regulator during Early Antiviral Response Mediated by IFNβ in Mouse Pancreatic β-Cells
title_short Reduction in ATP Levels Triggers Immunoproteasome Activation by the 11S (PA28) Regulator during Early Antiviral Response Mediated by IFNβ in Mouse Pancreatic β-Cells
title_sort reduction in atp levels triggers immunoproteasome activation by the 11s (pa28) regulator during early antiviral response mediated by ifnβ in mouse pancreatic β-cells
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3562186/
https://www.ncbi.nlm.nih.gov/pubmed/23383295
http://dx.doi.org/10.1371/journal.pone.0052408
work_keys_str_mv AT freudenburgwieke reductioninatplevelstriggersimmunoproteasomeactivationbythe11spa28regulatorduringearlyantiviralresponsemediatedbyifnbinmousepancreaticbcells
AT gautammadhav reductioninatplevelstriggersimmunoproteasomeactivationbythe11spa28regulatorduringearlyantiviralresponsemediatedbyifnbinmousepancreaticbcells
AT chakrabortypradipta reductioninatplevelstriggersimmunoproteasomeactivationbythe11spa28regulatorduringearlyantiviralresponsemediatedbyifnbinmousepancreaticbcells
AT jamesjared reductioninatplevelstriggersimmunoproteasomeactivationbythe11spa28regulatorduringearlyantiviralresponsemediatedbyifnbinmousepancreaticbcells
AT richardsjennifer reductioninatplevelstriggersimmunoproteasomeactivationbythe11spa28regulatorduringearlyantiviralresponsemediatedbyifnbinmousepancreaticbcells
AT salvatorialisons reductioninatplevelstriggersimmunoproteasomeactivationbythe11spa28regulatorduringearlyantiviralresponsemediatedbyifnbinmousepancreaticbcells
AT baldwinaaron reductioninatplevelstriggersimmunoproteasomeactivationbythe11spa28regulatorduringearlyantiviralresponsemediatedbyifnbinmousepancreaticbcells
AT schriewerjill reductioninatplevelstriggersimmunoproteasomeactivationbythe11spa28regulatorduringearlyantiviralresponsemediatedbyifnbinmousepancreaticbcells
AT bullerrmarkl reductioninatplevelstriggersimmunoproteasomeactivationbythe11spa28regulatorduringearlyantiviralresponsemediatedbyifnbinmousepancreaticbcells
AT corbettjohna reductioninatplevelstriggersimmunoproteasomeactivationbythe11spa28regulatorduringearlyantiviralresponsemediatedbyifnbinmousepancreaticbcells
AT skowyradorota reductioninatplevelstriggersimmunoproteasomeactivationbythe11spa28regulatorduringearlyantiviralresponsemediatedbyifnbinmousepancreaticbcells