Cargando…

Inhibition of Myelin-Cleaving Poteolytic Activities by Interferon-Beta in Rat Astrocyte Cultures. Comparative Analysis between Gelatinases and Calpain-II

BACKGROUND: Proteolytic enzymes have been implicated in the pathogenesis of Multiple Sclerosis (MS) for both their ability to degrade myelin proteins and for their presence in MS plaques.In this study we investigated whether interferon-beta (IFN-β) could differently modulate the activity and the exp...

Descripción completa

Detalles Bibliográficos
Autores principales: Latronico, Tiziana, Branà, Maria Teresa, Gramegna, Pasqua, Fasano, Anna, Di Bari, Gaetano, Liuzzi, Grazia Maria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3563665/
https://www.ncbi.nlm.nih.gov/pubmed/23390485
http://dx.doi.org/10.1371/journal.pone.0049656
_version_ 1782258237637132288
author Latronico, Tiziana
Branà, Maria Teresa
Gramegna, Pasqua
Fasano, Anna
Di Bari, Gaetano
Liuzzi, Grazia Maria
author_facet Latronico, Tiziana
Branà, Maria Teresa
Gramegna, Pasqua
Fasano, Anna
Di Bari, Gaetano
Liuzzi, Grazia Maria
author_sort Latronico, Tiziana
collection PubMed
description BACKGROUND: Proteolytic enzymes have been implicated in the pathogenesis of Multiple Sclerosis (MS) for both their ability to degrade myelin proteins and for their presence in MS plaques.In this study we investigated whether interferon-beta (IFN-β) could differently modulate the activity and the expression of proteolytic activities against myelin basic protein (MBP) present in lipopolysaccharide (LPS)-activated astrocytes. METHODOLOGY/PRINCIPAL FINDINGS: Rat astrocyte cultures were activated with LPS and simultaneously treated with different doses of IFN-β. To assess the presence of MBP-cleaving proteolytic activity, culture supernatants and cellular extracts collected from astrocytes were incubated with exogenous MBP. A MBP-degrading activity was found in both lysates and supernatants from LPS-activated astrocytes and was dose-dependently inhibited by IFN-β. The use of protease inhibitors as well as the zymographic analysis indicated the presence of calpain II (CANP-2) in cell lysates and gelatinases A (MMP-2) and B (MMP-9) in cell supernatants. RT-PCR revealed that the expression of CANP-2 as well as of MMP-2 and MMP-9 was increased in LPS-activated astrocytes and was dose-dependently inhibited by IFN-β treatment. The expression of calpastatin, the natural inhibitor of CANPs, was not affected by IFN-β treatment. By contrast, decreased expression of TIMP-1 and TIMP-2, the natural inhibitors of MMP-9 and MMP-2, respectively, was observed in IFN-β-treated astrocytes compared to LPS-treated cells. The ratio enzyme/inhibitor indicated that the effect of IFN-β treatment is more relevant to CANP-2 than on MMPs. CONCLUSIONS/ SIGNIFICANCE: These results suggest that the neuroinflammatory damage during MS involves altered balance between multiple proteases and their inhibitors and indicate that IFN-β is effective in regulating different enzymatic systems involved in MS pathogenesis.
format Online
Article
Text
id pubmed-3563665
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-35636652013-02-06 Inhibition of Myelin-Cleaving Poteolytic Activities by Interferon-Beta in Rat Astrocyte Cultures. Comparative Analysis between Gelatinases and Calpain-II Latronico, Tiziana Branà, Maria Teresa Gramegna, Pasqua Fasano, Anna Di Bari, Gaetano Liuzzi, Grazia Maria PLoS One Research Article BACKGROUND: Proteolytic enzymes have been implicated in the pathogenesis of Multiple Sclerosis (MS) for both their ability to degrade myelin proteins and for their presence in MS plaques.In this study we investigated whether interferon-beta (IFN-β) could differently modulate the activity and the expression of proteolytic activities against myelin basic protein (MBP) present in lipopolysaccharide (LPS)-activated astrocytes. METHODOLOGY/PRINCIPAL FINDINGS: Rat astrocyte cultures were activated with LPS and simultaneously treated with different doses of IFN-β. To assess the presence of MBP-cleaving proteolytic activity, culture supernatants and cellular extracts collected from astrocytes were incubated with exogenous MBP. A MBP-degrading activity was found in both lysates and supernatants from LPS-activated astrocytes and was dose-dependently inhibited by IFN-β. The use of protease inhibitors as well as the zymographic analysis indicated the presence of calpain II (CANP-2) in cell lysates and gelatinases A (MMP-2) and B (MMP-9) in cell supernatants. RT-PCR revealed that the expression of CANP-2 as well as of MMP-2 and MMP-9 was increased in LPS-activated astrocytes and was dose-dependently inhibited by IFN-β treatment. The expression of calpastatin, the natural inhibitor of CANPs, was not affected by IFN-β treatment. By contrast, decreased expression of TIMP-1 and TIMP-2, the natural inhibitors of MMP-9 and MMP-2, respectively, was observed in IFN-β-treated astrocytes compared to LPS-treated cells. The ratio enzyme/inhibitor indicated that the effect of IFN-β treatment is more relevant to CANP-2 than on MMPs. CONCLUSIONS/ SIGNIFICANCE: These results suggest that the neuroinflammatory damage during MS involves altered balance between multiple proteases and their inhibitors and indicate that IFN-β is effective in regulating different enzymatic systems involved in MS pathogenesis. Public Library of Science 2013-02-04 /pmc/articles/PMC3563665/ /pubmed/23390485 http://dx.doi.org/10.1371/journal.pone.0049656 Text en © 2013 Latronico et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Latronico, Tiziana
Branà, Maria Teresa
Gramegna, Pasqua
Fasano, Anna
Di Bari, Gaetano
Liuzzi, Grazia Maria
Inhibition of Myelin-Cleaving Poteolytic Activities by Interferon-Beta in Rat Astrocyte Cultures. Comparative Analysis between Gelatinases and Calpain-II
title Inhibition of Myelin-Cleaving Poteolytic Activities by Interferon-Beta in Rat Astrocyte Cultures. Comparative Analysis between Gelatinases and Calpain-II
title_full Inhibition of Myelin-Cleaving Poteolytic Activities by Interferon-Beta in Rat Astrocyte Cultures. Comparative Analysis between Gelatinases and Calpain-II
title_fullStr Inhibition of Myelin-Cleaving Poteolytic Activities by Interferon-Beta in Rat Astrocyte Cultures. Comparative Analysis between Gelatinases and Calpain-II
title_full_unstemmed Inhibition of Myelin-Cleaving Poteolytic Activities by Interferon-Beta in Rat Astrocyte Cultures. Comparative Analysis between Gelatinases and Calpain-II
title_short Inhibition of Myelin-Cleaving Poteolytic Activities by Interferon-Beta in Rat Astrocyte Cultures. Comparative Analysis between Gelatinases and Calpain-II
title_sort inhibition of myelin-cleaving poteolytic activities by interferon-beta in rat astrocyte cultures. comparative analysis between gelatinases and calpain-ii
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3563665/
https://www.ncbi.nlm.nih.gov/pubmed/23390485
http://dx.doi.org/10.1371/journal.pone.0049656
work_keys_str_mv AT latronicotiziana inhibitionofmyelincleavingpoteolyticactivitiesbyinterferonbetainratastrocyteculturescomparativeanalysisbetweengelatinasesandcalpainii
AT branamariateresa inhibitionofmyelincleavingpoteolyticactivitiesbyinterferonbetainratastrocyteculturescomparativeanalysisbetweengelatinasesandcalpainii
AT gramegnapasqua inhibitionofmyelincleavingpoteolyticactivitiesbyinterferonbetainratastrocyteculturescomparativeanalysisbetweengelatinasesandcalpainii
AT fasanoanna inhibitionofmyelincleavingpoteolyticactivitiesbyinterferonbetainratastrocyteculturescomparativeanalysisbetweengelatinasesandcalpainii
AT dibarigaetano inhibitionofmyelincleavingpoteolyticactivitiesbyinterferonbetainratastrocyteculturescomparativeanalysisbetweengelatinasesandcalpainii
AT liuzzigraziamaria inhibitionofmyelincleavingpoteolyticactivitiesbyinterferonbetainratastrocyteculturescomparativeanalysisbetweengelatinasesandcalpainii