Cargando…

Horizontal Transmission of Malignancy: In-Vivo Fusion of Human Lymphomas with Hamster Stroma Produces Tumors Retaining Human Genes and Lymphoid Pathology

We report the in-vivo fusion of two Hodgkin lymphomas with golden hamster cheek pouch cells, resulting in serially-transplanted (over 5–6 years) GW-532 and GW-584 heterosynkaryon tumor cells displaying both human and hamster DNA (by FISH), lymphoma-like morphology, aggressive metastasis, and retenti...

Descripción completa

Detalles Bibliográficos
Autores principales: Goldenberg, David M., Gold, David V., Loo, Meiyu, Liu, Donglin, Chang, Chien-Hsing, Jaffe, Elaine S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3566191/
https://www.ncbi.nlm.nih.gov/pubmed/23405135
http://dx.doi.org/10.1371/journal.pone.0055324
Descripción
Sumario:We report the in-vivo fusion of two Hodgkin lymphomas with golden hamster cheek pouch cells, resulting in serially-transplanted (over 5–6 years) GW-532 and GW-584 heterosynkaryon tumor cells displaying both human and hamster DNA (by FISH), lymphoma-like morphology, aggressive metastasis, and retention of 7 human genes (CD74, CXCR4, CD19, CD20, CD71, CD79b, and VIM) out of 24 tested by PCR. The prevalence of B-cell restricted genes (CD19, CD20, and CD79b) suggests that this uniform population may be the clonal initiating (malignant) cells of Hodgkin lymphoma, despite their not showing translation to their respective proteins by immunohistochemical analysis. This is believed to be the first report of in-vivo cell-cell fusion of human lymphoma and rodent host cells, and may be a method to disclose genes regulating both organoid and metastasis signatures, suggesting that the horizontal transfer of tumor DNA to adjacent stromal cells may be implicated in tumor heterogeneity and progression. The B-cell gene signature of the hybrid xenografts suggests that Hodgkin lymphoma, or its initiating cells, is a B-cell malignancy.