Cargando…

Correlated Evolution of Positions within Mammalian cis Elements

Transcriptional regulation critically depends on proper interactions between transcription factors (TF) and their cognate DNA binding sites. The widely used model of TF-DNA binding – the Positional Weight Matrix (PWM) – presumes independence between positions within the binding site. However, there...

Descripción completa

Detalles Bibliográficos
Autores principales: Mukherjee, Rithun, Evans, Perry, Singh, Larry N., Hannenhalli, Sridhar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3568137/
https://www.ncbi.nlm.nih.gov/pubmed/23408994
http://dx.doi.org/10.1371/journal.pone.0055521
_version_ 1782258776257069056
author Mukherjee, Rithun
Evans, Perry
Singh, Larry N.
Hannenhalli, Sridhar
author_facet Mukherjee, Rithun
Evans, Perry
Singh, Larry N.
Hannenhalli, Sridhar
author_sort Mukherjee, Rithun
collection PubMed
description Transcriptional regulation critically depends on proper interactions between transcription factors (TF) and their cognate DNA binding sites. The widely used model of TF-DNA binding – the Positional Weight Matrix (PWM) – presumes independence between positions within the binding site. However, there is evidence to show that the independence assumption may not always hold, and the extent of interposition dependence is not completely known. We hypothesize that the interposition dependence should partly be manifested as correlated evolution at the positions. We report a Maximum-Likelihood (ML) approach to infer correlated evolution at any two positions within a PWM, based on a multiple alignment of 5 mammalian genomes. Application to a genome-wide set of putative cis elements in human promoters reveals a prevalence of correlated evolution within cis elements. We found that the interdependence between two positions decreases with increasing distance between the positions. The interdependent positions tend to be evolutionarily more constrained and moreover, the dependence patterns are relatively similar across structurally related transcription factors. Although some of the detected mutational dependencies may be due to context-dependent genomic hyper-mutation, notably CG to TG, the majority is likely due to context-dependent preferences for specific nucleotide combinations within the cis elements. Patterns of evolution at individual nucleotide positions within mammalian TF binding sites are often significantly correlated, suggesting interposition dependence. The proposed methodology is also applicable to other classes of non-coding functional elements. A detailed investigation of mutational dependencies within specific motifs could reveal preferred nucleotide combinations that may help refine the DNA binding models.
format Online
Article
Text
id pubmed-3568137
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-35681372013-02-13 Correlated Evolution of Positions within Mammalian cis Elements Mukherjee, Rithun Evans, Perry Singh, Larry N. Hannenhalli, Sridhar PLoS One Research Article Transcriptional regulation critically depends on proper interactions between transcription factors (TF) and their cognate DNA binding sites. The widely used model of TF-DNA binding – the Positional Weight Matrix (PWM) – presumes independence between positions within the binding site. However, there is evidence to show that the independence assumption may not always hold, and the extent of interposition dependence is not completely known. We hypothesize that the interposition dependence should partly be manifested as correlated evolution at the positions. We report a Maximum-Likelihood (ML) approach to infer correlated evolution at any two positions within a PWM, based on a multiple alignment of 5 mammalian genomes. Application to a genome-wide set of putative cis elements in human promoters reveals a prevalence of correlated evolution within cis elements. We found that the interdependence between two positions decreases with increasing distance between the positions. The interdependent positions tend to be evolutionarily more constrained and moreover, the dependence patterns are relatively similar across structurally related transcription factors. Although some of the detected mutational dependencies may be due to context-dependent genomic hyper-mutation, notably CG to TG, the majority is likely due to context-dependent preferences for specific nucleotide combinations within the cis elements. Patterns of evolution at individual nucleotide positions within mammalian TF binding sites are often significantly correlated, suggesting interposition dependence. The proposed methodology is also applicable to other classes of non-coding functional elements. A detailed investigation of mutational dependencies within specific motifs could reveal preferred nucleotide combinations that may help refine the DNA binding models. Public Library of Science 2013-02-08 /pmc/articles/PMC3568137/ /pubmed/23408994 http://dx.doi.org/10.1371/journal.pone.0055521 Text en © 2013 Mukherjee et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Mukherjee, Rithun
Evans, Perry
Singh, Larry N.
Hannenhalli, Sridhar
Correlated Evolution of Positions within Mammalian cis Elements
title Correlated Evolution of Positions within Mammalian cis Elements
title_full Correlated Evolution of Positions within Mammalian cis Elements
title_fullStr Correlated Evolution of Positions within Mammalian cis Elements
title_full_unstemmed Correlated Evolution of Positions within Mammalian cis Elements
title_short Correlated Evolution of Positions within Mammalian cis Elements
title_sort correlated evolution of positions within mammalian cis elements
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3568137/
https://www.ncbi.nlm.nih.gov/pubmed/23408994
http://dx.doi.org/10.1371/journal.pone.0055521
work_keys_str_mv AT mukherjeerithun correlatedevolutionofpositionswithinmammalianciselements
AT evansperry correlatedevolutionofpositionswithinmammalianciselements
AT singhlarryn correlatedevolutionofpositionswithinmammalianciselements
AT hannenhallisridhar correlatedevolutionofpositionswithinmammalianciselements